学科分类
/ 1
7 个结果
  • 简介:废弃物处理温室气体排放的主要排放源之一为废水(生活污水和工业废水)处理CH4排放。根据统计资料和IPCC提供的方法,选择适合中国的排放因子,分析了中国废水处理2005—2010年的CH4排放特征和2000—2010年CH4产生的各驱动因子。并且根据中国的实际情况预测和分析了中国废水处理CH4排放趋势和排放潜力。结果显示:2010年中国生活污水处理CH4排放量为61.10万t,工业废水处理的CH4排放量为162.37万t,造纸等八大行业CH4排放量达到总CH4排放量的92%以上,2005—2010年的CH4排放量逐年增加;到2020年在减排情景下,生活污水处理CH4排放量为101.36万t,减排潜力为7.63万t,比2010年排放量增加了66%工业废水处理CH4排放量233.93万t,减排潜力为25.99万t,比2010年排放量增加了44%。

  • 标签: 生活污水 工业废水 CH4排放 减排潜力
  • 简介:利用自适应控制模型对气候系统进行模拟,比较了基于不同参照基准年2℃升温目标下的金球允许排放路径,在评价各目标可行性的基础上提出了三种减排目标方案,进而根据不同分配原则计算了中国未来的排放空间。研究表明,实现较工业化前升温2℃较为困难,实现较1850—1900年和1861—1880年升温2℃目标的可能性较大。提出了较工业化前升温2.5℃、较1986—2005年升温1.0℃和较1850—1900年升温1.5℃三种可行的轻度、中度和高度减排目标。中国在主权、平等主义和支付能力分配原则下可获得约1/5的比例份额,在三种目标情景中排放空间逐渐降低,排放缺口依次增大。

  • 标签: 自适应控制 升温目标 排放空间 分配原则
  • 简介:采用《国家温室气体清单指南》推荐方法,估算了1990—2014年中国各省份电力行业的温室气体排放水平。研究时期内,中国电力行业排放增长6.2倍,达到38.0(95%信度区间为31.3~46.0)亿tCO2当量(CO2-eq),而各省排放水平及其变化趋势呈现出显著的差异,排放重心向西部省份转移,内蒙古成为全国电力行业排放最大的省份。同时基于未来电源结构的发展方案,预测了2015—2050年不同电力需求情景下电力行业温室气体排放的变化趋势和达到排放峰值情况。电力需求高增速情景下2034年达到排放峰值59.5(49.3~71.8)亿tCO2-eq,而低增速情景可以提前至2031年达到排放峰值,且峰值水平下降7.7(6.3~9.3)亿tCO2-eq。

  • 标签: 电力行业 温室气体 空间分布 情景分析 排放峰值
  • 简介:通过应用上海市能源-环境-经济CGE模型,针对碳排放交易机制所涉及的重要要素,包括覆盖行业和分配方式等设计不同的情景,模拟了在不同的就业条件下碳排放交易机制对经济的影响和对传统污染的协同减排效应。结果表明,如果碳交易纳管行业释放出来的劳动力能及时被其他行业吸纳和消化,则碳交易对GDP的整体影响为正,碳交易的实施产生了双重红利。若劳动力不能及时转移,则碳交易对GDP的整体影响为负,2020年不同情景下GDP损失为1.5%~2.4%;相比覆盖部分行业,在覆盖全部行业的情景下,碳价格最低,从2013年的30元/t增加到2020年的202元/t,对高耗能行业的竞争力影响相对较小,但是由于所有行业都纳入到纳管范围,使得对GDP的负面影响最大;此外,实施碳交易能明显改善环境效益,有助于推动SO2和NOX减排目标的实现。

  • 标签: 上海 碳排放交易 CGE模型 经济影响 协同减排效应
  • 简介:通过51年德州市区霾出现次数与相邻的陵县空旷地带的观测站所测得的霾出现次数进行对比分析,在相同的符合霾生成的气象条件下,市区与陵县霾出现次数的月分布特征及年变化特征。探讨市区与陵县以上两种特征的差异从而得出市区的空气污染和那些环境因素有关,这里所说的环境因素指的是城市布局、建筑布局、污染源分布、污染排放种类和时空分布。结合德州气候形势提出减少德州市区空气污染的具体办法。为政府科学施政、科学管理提出参考依据。

  • 标签: 市郊对比 措施 德州
  • 简介:京津冀大气灰霾污染严重,天津市作为其核心组成之一其污染形势亦严峻。选取2013年2月20~28日天津重霾污染时段7站PM2.5(空气动力学当量直径小于等于2.5μm的颗粒物,即细颗粒物)和气态污染数据,结合北京污染数据、地面气象要素、能见度、边界层温湿和风廓线、后向轨迹,深入分析重霾污染过程特征及气象和边界层成因。结果显示,研究时段天津PM2.5、SO2、NO2、CO和O3浓度均值为150、87、56、2.4和22μgm-3,气态污染各站差异显著,但仅有SO2全面超过国家空气质量一级标准(50μgm-3),而PM2.5具有区域同步变化特征,且严重超标,是一级标准(35μgm-3)的2~8倍,最高小时均值高达364μgm-3;高浓度PM2.5是导致低能见度的主因,能见度小于10km对应PM2.5阈值为50μgm-3。弱风和高湿度导致局地排放累积,PM2.5始增,在高湿度条件下,持续偏南风促使其稳步增加,配合弱北风和弱东风PM2.5震荡上扬,污染高值阶段,南北气流短时迅速切换,区域污染传输叠加污染的循环累积,PM2.5浓度峰值达到最高;除因边界层强东风导致的平流逆温外,高浓度PM2.5与平流逆温密切相关;高污染时段高湿主要集中在500m以下,且随高度递减幅度较大;位于200~600m的低空急流一定程度抑制污染上升,尤其持续强东风使PM2.5浓度稳步降低到二级水平,污染迅速有效清除最终依赖整层的强西北风。北京、环绕天津的河北中部和西南部地区对天津重污染有显著贡献。

  • 标签: 天津 PM2.5 能见度 气象要素 廓线
  • 简介:利用在线耦合的大气化学模式WRF-ChemV3.6(WeatherResearchForecastingModelwithChemistryVersion3.6)及环境、气象观测数据,在完成大气化学方案优选的基础上,研究了华北地区一次重霾污染过程(2013年2月15-17日)对气象条件的反馈作用。重点关注一次颗粒物、无机气态成分和挥发性有机污染的人为排放对PM2.5(空气动力学当量直径小于等于2.5μm的颗粒物,即细颗粒物)生成的贡献,探讨了由此引发的气象条件的变化。模拟结果显示,上述3种人为源的综合排放对华北地区PM2.5浓度的平均贡献率为91.27%,其中对北京、秦皇岛和沧州的贡献率分别达96.9%、95.9%和97.2%。这使区域地面太阳向下短波辐射降低近15.99%,区域平均地面辐射强迫达-26.51Wm^-2,由此导致地面温度下降0.14°C(3.68%),逆温增强,垂直温度梯度(?T/?z)升高0.026Kkm^-1,边界层高度降低18.92m(8.77%),平均风速减少约0.014ms^-1(0.35%),相对湿度绝对值升高0.51%,地面平均气压降低0.86Pa。对于15-17日污染过程,人为源综合排放的气溶胶对短波辐射的影响在天气过程中占主导地位,对边界层高度的影响较大,但不起主导作用,对温度、风速、相对湿度、气压的作用则远小于天气系统本身。挥发性有机污染(VolatileOrganicCompounds,VOCs)作为二次有机气溶胶(SecondaryOrganicAerosol,SOA)的前体物,其人为排放对SOA浓度的贡献率约为99.6%。同时,VOCs通过调整大气反应活性促进无机气态成分向无机盐转化,它对硫酸盐和硝酸盐浓度的贡献达50%以上。然而,VOCs对整个PM2.5浓度的贡献不及各种源综合贡献的1/4。人为排放的VOCs对气象场的反馈与综合排放的作用基本一致,但对地面气压的影响VOCs排放时以热力因子为主,而人为源综合排放时以动力因子为主。上述结果暗示,灰霾污染过程所引发的气象条件向不利于污染扩散方向

  • 标签: WRF-Chem模式 华北地区 灰霾 挥发性有机污染物(VOCs) 反馈作用