学科分类
/ 1
7 个结果
  • 简介:羟基磷灰石由于具有良好的生物相容性和生物活性而应用广泛,形貌控制对其应用至关重要。本文分别以Ca(NO3)2·4H2O、KH2PO4·3H2O为Ca源和P源,采用水热法制备不同形貌的羟基磷灰石。用X射线衍射(XRD)和扫描电镜(SEM)对反应产物进行表征,研究水热反应温度、水热反应时间和反应物浓度对羟基磷灰石形貌的影响。结果表明,不同条件下,产物为长径比不同的片状、带状及花状羟基磷灰石(HA),其长度为1-100μm、宽1-5μm、厚约100nm、长径比为1-100,并从晶体生长动力学方面探讨不同合成条件对羟基磷灰石形貌的影响机理。

  • 标签: 羟基磷灰石 水热法 形貌控制 长径比
  • 简介:采用粉末冶金法,制备纳米SiO2颗粒(n-SiO2)、纳米SiC晶须(n-SiCw)和碳纳米(CNTs)3种不同形态纳米相增强铜基复合材料,通过光学显微镜(OM)、扫描电镜(SEM)和球/盘式摩擦磨损试验机等测试手段研究纳米添加相对铜基复合材料显微组织、物理性能和摩擦学性能的影响。结果表明,纳米相可以显著提高铜基复合材料的硬度,其中n-SiCw的增强效果优于n-SiO2和CNTs;CNTs/Cu的减摩耐磨效果优于SiO2/Cu和SiCw/Cu;0.75%-CNTs/Cu(质量分数)复合材料具有高的硬度、优良的减摩耐磨性能,是综合性能最佳的复合材料。

  • 标签: 纳米相 复合材料 摩擦磨损 粉末冶金
  • 简介:采用无压熔渗工艺制备1种新型的具有自润滑耐磨性能的炭纤维整体织物/炭-铜(C/C-Cu)复合材料,分别在环-块运动模式、销-盘运动模式和往复运动模式下对该材料的摩擦磨损特性进行研究,并与粉末冶金方法制备的滑板用C/Cu复合材料进行性能比较。结果表明:C/C-Cu复合材料在不同试验模式下表现出迥异的摩擦磨损特性。往复运动模式下试样表面形成完整光滑的磨屑层,摩擦因数和磨损量均分别维持在0.02和1.70mm3的较低水平,摩擦磨损性能优于C/Cu复合材料;环-块模式下试样磨损面粗糙,摩擦因数最高,达到0.25以上,磨损量最低,仅为0.75mm3与C/Cu复合材料的摩擦磨损性能相当;销-盘模式下试样的磨损量远高于其它2种摩擦模式,最高达55mm3,摩擦磨损性能比C/Cu复合材料差。

  • 标签: C/C-CU复合材料 熔渗 摩擦磨损特性 试验模式
  • 简介:以三氯甲基硅烷(CH3SiCl3)为前驱体,采用化学气相沉积法(Chemicalvapordeposition,CVD),在原位生长有碳纳米(Carbonnanotubes,CNTs)的C/C复合材料表面制备SiC涂层。用扫描电镜(SEM)和X射线能谱仪(EDS)观察和分析涂层微观形貌及成份。研究沉积温度(1000~1150℃)对SiC涂层的表面、截面以及SiC颗粒的微观形貌的影响。结果表明:在1000℃下反应时,得到晶须状SiC;沉积温度为1050℃时涂层平整、致密;沉积温度提高到1100℃时,涂层粗糙,致密度下降;1150℃下形成类似岛状组织,SiC颗粒团聚长大,涂层粗糙,并有很多裂纹和孔洞,致密度低。对涂层成份和断口形貌研究表明,基体和涂层之间有1个过渡区,SiC涂层和基体之间结合良好。

  • 标签: 炭/炭复合材料 CNT-SiC复合涂层 碳纳米管 CVD
  • 简介:采用片状粉末冶金技术制备碳纳米/铝(CNT/Al)复合材料,并研究其力学性能。首先,通过聚合物热解化学气相沉积法(PP-CVD)在微纳铝片表面原位生长碳纳米管制备CNT/Al片状复合粉末,随后对该片状复合粉末进行冷压成形、烧结致密化和挤压变形加工等,制备致密的CNT/Al复合材料块体。实验结果表明,相比铝基体,所制备的1.5%CNT/Al复合材料抗拉强度和模量分别提高了18.5%和23.7%,3.0%CNT/Al复合材料抗拉强度和模量分别提高了31.4%和74.1%,但由于铝基体的细晶强化和位错强化作用,使其塑性分别下降至4.96%和1.5%。

  • 标签: 碳纳米管 铝基复合材料 化学气相沉积 片状粉末冶金 力学性能
  • 简介:采用真空热压烧结法,以Fe基元素混合粉末和MBD。人造金刚石为原材料,通过改变工艺参数,制备锯切花岗岩用Fe基孕镶金刚石锯片磨头。采用SEM、XRD、布氏硬度仪、万能力学试验机和MRH-3销盘式摩擦试验机研究不同烧结工艺制备的磨头结构、力学性能和摩擦磨损行为。结果表明:提高烧结温度或烧结压力可使磨头胎体合金化程度增大,金刚石和胎体由机械包镶变为冶金结合,力学性能得到提高。与680℃/15MPa/4min和760℃/23MPa/4min烧结工艺相比,760℃/15MPa/4min工艺所得磨头胎体与金刚石具有最佳的耐磨匹配性和界面结合特性,摩擦磨损性能最好。

  • 标签: Fe基孕镶金刚石磨头 耐磨匹配性 界面结合 摩擦磨损 磨损机理
  • 简介:采用杂凝聚的方式制备CNTs(CNTs为碳纳米Carbonnanotubes)分散均匀的3Y-ZrO2/CNTs混合粉体,热压后得到3Y-ZrO2/CNTs复合陶瓷块体材料。与普通球磨混料法制备的陶瓷样品进行对比,研究CNTs含量以及CNTs的分散性对3Y-ZrO2/CNTs复合陶瓷的组织、密度、断裂韧性以及电学性能的影响,并分析CNTs对陶瓷的增韧机理。结果表明,采用杂凝聚处理有助于CNTs在3Y-ZrO2/CNTs复合陶瓷中的均匀分散,CNTs含量(质量分数,下同)为1.00%的3Y-ZrO2/CNTs复合陶瓷的断裂韧性达到(18.13±0.50)MPa·m1/2,较球磨混料法制备的样品提高35.10%。陶瓷基体中均匀分散的CNTs不仅通过促进马氏体相变起到增韧作用,而且CNTs的桥联和拔出机制也直接起到增韧的作用。CNTs在陶瓷基体中均匀分散能大幅降低复合陶瓷的导通阈值。经杂凝聚预处理的CNTs含量为4.00%时,3Y-ZrO2/CNTs复合陶瓷的电导率达到4.467S/m,比不含CNTs的3Y-ZrO2陶瓷高13个数量级;当CNTs含量为1.00%时,复合材料的相对介电常数达到6340,比未经杂凝处理的样品高2个数量级。

  • 标签: 碳纳米管 氧化锆陶瓷 杂凝聚 断裂韧性 电导率 介电常数