学科分类
/ 1
6 个结果
  • 简介:为了解波形钢腹板矮斜拉桥新型组合结构桥梁的整体稳定特性,以跨径(58+118+188+108)m的某波形钢腹板矮斜拉桥为背景,根据波形钢腹板箱梁的力学行为特点,利用MIDASCivil软件建立该桥杆系单元模型,对比ANSYS软件建立的空间块体板壳组合单元模型的计算结果,验证了杆系单元模型的有效性,在此基础上采用杆系模型计算全桥的整体稳定性。计算结果表明:恒载是桥梁重要的失稳因素,引起的第1阶失稳模态为面内主墩屈曲失稳;风荷载单独作用引起的第1阶失稳模态主要是面内对称弯曲失稳和面内反对称弯曲失稳,稳定系数较大;桥梁的弹性稳定系数最小值为19.79;桥梁结构整体失稳模态接近于高墩连续刚构桥的失稳模态;考虑几何非线性后稳定系数最小值为19.4,桥梁结构稳定性满足桥梁设计规范要求,该桥在运营阶段不会发生失稳破坏。

  • 标签: 矮塔斜拉桥 波形钢腹板 单箱多室箱形梁 稳定性分析 有限元法 杆系模型
  • 简介:平塘特大桥为(249.5+2×550+249.5)m三双索面叠合梁斜拉桥,中承台于冬季施工,环境温度较低且天气变化剧烈、冷击效应明显。为避免在施工期间出现危害性裂缝,对承台大体积混凝土进行了温度控制。中承台分3次浇筑,施工过程中,采用了合理的混凝土配合比;对入模温度进行严格控制;在混凝土外部搭设保温棚,采用蒸汽养生等保温措施;内部设置了冷却水系统进行降温;表面、底面配制了防裂钢筋网。采用有限元软件MIDAS计算承台混凝土温度场和应力场,并在承台内部布置温度测点,对混凝土温度进行全程监测。结果表明:实测温度场的变化趋势与计算结果吻合较好,主要温度场和应力场指标均符合规范要求,大体积混凝土表面在整个浇筑养护期间均未出现明显有害裂缝。

  • 标签: 斜拉桥 中塔承台 大体积混凝土 温度控制 仿真计算 温度监测
  • 简介:广东榕江大桥为(60+70+380+70+60)m双塔双索面混合梁低斜拉桥,采用门式框架桥,斜拉索辐射型布置,桥塔顶设钢锚室进行斜拉索集中锚固。钢锚室高6.0m、顺桥向长4.6m、横桥向宽2.36m,由壁板、腹板、底板、隔板、锚箱部件及预埋件等构成,横桥向分为3个锚室,每个锚室锚固4对斜拉索,锚室采用重防腐涂装体系。钢锚室制造时,对钢锚室底板及预埋承压板端面进行整体铣面加工;采用超声冲击和整体振动技术,消除钢锚室焊接残余应力。钢锚室安装时,在预埋承压板与塔顶混凝土间预留5cm空隙,采用压浆填充密实,并对预埋承压板的平整度进行跟踪测量;钢锚室采用900t浮吊一次性吊装就位,再利用4台三向千斤顶进行微调。实践表明,该桥桥钢锚室设计合理,施工关键技术有效保证了钢锚室制造和安装精度。

  • 标签: 斜拉桥 斜拉索 集中锚固 钢锚室 焊接残余应力 后注浆
  • 简介:蒙华铁路洞庭湖特大桥主桥是跨度布置为(98+140+406+406+140+98)m的三双索面钢箱钢桁结合梁斜拉桥。针对覆盖层浅、岩石破碎且岩面倾斜、施工水域狭窄、深水岩石爆破清理等难题,制定了桥基础施工采用双壁钢套箱围堰,先围堰后平台的总体施工方案。围堰采用直径为50.5m、侧板厚度为1.5m的圆形结构形式,并设置6根3.0m辅助桩用于围堰的抗浮,减少了封底及基坑开挖。圆形套箱围堰气囊法下河时,采用浮式托架,减少了吃水,方便了托架的回收利用。5号墩基础采用精确爆破技术和短锚围堰定位技术,使得狭窄水域施工成为可能。钻孔施工中,采用桩周注浆、优质泥浆护壁和减压钻进等技术,解决了倾斜岩面、岩层破碎地质的钻孔施工难题。

  • 标签: 斜拉桥 结合梁 桥塔 钻孔桩 基础 围堰
  • 简介:重庆红岩村嘉陵江大桥为高低双索面公轨两用钢桁梁斜拉桥,索斜拉索锚固采用钢锚箱形式。钢锚箱为箱形结构,最大节段尺寸为6.2m×2.2m×3.0m(长×宽×高),节段最重达26t,吊装高度达160m。首节钢锚箱索导管长达8m,跨越塔柱2个浇筑节段(标准节段高6m)。针对钢锚箱体积大、重量重、吊装高度高和首节钢锚箱索导管超长的特点,采用专用起重设备吊装钢锚箱节段,首节钢锚箱与索导管分离安装,首节钢锚箱索导管通过空间位置放样、初定位、精密定位确保三维坐标精度,采用L10角钢进行加强以防首节钢锚箱变形,剩余节段钢锚箱安装采用导向装置就位。施工中严格控制每节段钢锚箱的平面位置、高程、倾斜度、顶面平整度,实现了钢锚箱安全、优质、快速的施工目标。

  • 标签: 公轨两用桥 斜拉桥 钢锚箱 索导管 定位 测量
  • 简介:平潭海峡公铁两用大桥元洪航道桥为主跨532m的钢桁混合梁斜拉桥,桥为H形钢筋混凝土结构,塔高200m.桥施工过程中需考虑抗台风,若不设置临时横撑,桥施工至24号节段后中塔柱根部受力较大,设计采用桁架式临时横撑结构(采用2排桁架式结构,设置于桥20号、21号节段间,2排桁架间通过联结系X1连接)改善桥受力,横撑两端与桥采用铰接形式(形式为刚性铰,设计成抗剪、抗拉受力体系,承受最大拉力为5509kN,最大剪力为1428kN);采用MIDASCnal及Fea有限元软件对横撑进行结构受力分析,并对桥施工过程中台风作用下桥自身受力进行分析,结果表明,桁架式临时横撑和桥受力满足要求,该横撑可减少桥中塔柱根部弯矩20%以上,效果显著.

  • 标签: 斜拉桥 桥塔 台风 桁架式临时横撑 刚性铰 结构设计