学科分类
/ 1
8 个结果
  • 简介:基于深度学习的医学图像处理已成为该领域研究的热点。深度学习方法在各种医学图像应用中取得了优异性能,达到甚至超过了专家级医生的水平。本文首先简述深度学习模型的基本原理,尤其是监督学习算法中的各种神经网络,然后总结它们在医学图像分类与识别、定位与检测、分割、配准与融合等应用领域的研究进展,最后探讨医学图像处理深度学习方法面临的挑战及应对措施。

  • 标签: 深度学习 医学图像处理 监督学习 神经网络
  • 简介:针对因影响因素众多而难以预测的隧道沉降问题,使用粒子群算法(PSO)优化支持向量回归模型(SVR)并结合灰色理论中的等维新息,提出了混合模型对隧道沉降时间序列数据进行预测研究.与ELM极限学习机预测模型及PSO-BP神经网络预测模型进行了对比实验.发现等维新息SVR模型在预测精度上要优于其它两个模型,于是得出该模型可以有效地应用于隧道沉降时间序列的预测研究.

  • 标签: 隧道沉降 回归预测 灰色理论 时间序列
  • 简介:深度学习算法现在已经成为医学图像处理的最成功的模型,生成对抗网络将神经网络与对抗训练的思想相结合,已经开始应用于医学图像处理。该文主要介绍了几种典型的生成对抗网络,回顾了生成对抗网络在医学图像处理中的应用,包括图像的生成、转换、重建、分割等任务,并对生成对抗网络在智能诊断中的作用、目前存在的问题和未来的发展方向做了讨论。

  • 标签: 深度学习 生成对抗网络 图像合成 图像分割
  • 简介:针对微生物快速检测的需求,基于生长时间光谱法设计了大肠菌群快速检测仪器.根据大肠菌群指数生长期与大肠菌群浓度的关系来计算大肠菌群初始浓度;采用分光光度法对大肠菌群的指数生长时间进行检测;通过实验确定了625nm作为分光光度检测波长;设计了基于双积分球的仪器光路结构,提高了仪器对透过率的测量稳定性,采用样品从实验开始时的初始透过率降低至初始透过率的70%时所需时间作为生长时间,显著降低了检测所需时间,对大肠菌群100cfu/mL的检测,只需要276min.建立了大肠菌群的生长时间与大肠菌群初始浓度的数学模型.设计实验评价了本方案平行样标准偏差小于12.61%;与滤膜法进行比对,相关系数0.979.

  • 标签: 生长时间光谱法 分光光度法 快速检测 微生物分析仪 大肠菌群
  • 简介:再生平衡温度(Break-evenTemperature,BET)是柴油微粒捕集器(DieselParticulateFilter,DPF)在过滤时微粒累积和氧化速率相等时的温度,是DPF实现连续再生的关键。为研究生物柴油对连续再生DPF再生特性的影响,分别采用石化柴油和生物柴油作为燃料,对连续再生DPF的BET进行了台架试验研究,评估了不同燃料DPF的BET特性。试验结果表明,在同等工况下,生物柴油的BET比石化柴油低60℃左右,在同等排气状态下,生物柴油的BET比石化柴油低40℃左右,在柴油机上使用生物柴油可以有效降低DPF的再生平衡温度,有利于DPF实现连续再生。

  • 标签: 生物柴油 柴油微粒捕集器 连续再生 再生平衡温度 排放
  • 简介:航天飞机作为人类发射和运营次数最多的载人航天器之一,在其30年的飞行任务中积累了大量的微生物防控经验。本文分析了航天飞机飞行任务特点,并调研了其曾出现过的微生物问题及制定的应对措施。我国载人航天飞行的时间相对较短,在建设载人空间站时不可避免会面临空间微生物的风险,因此可从美国航天飞机微生物防控中吸取经验教训。

  • 标签: 载人航天 航天飞机 微生物
  • 简介:基因组重排作为一种快速改良细胞表型的方法,不仅能有效提高微生物合成活性产物的能力,也能提高微生物的耐受性和对底物的利用率,还能激活沉默基因的表达产生新的化合物.本文综合论述了基因组重排的概况和基因组重排的过程,并讨论了基因组重排对微生物表型改良的应用以及对基因组重排的展望.

  • 标签: 基因组重排 遗传多样性 耐受性 表型改良 原生质体融合
  • 简介:按文献方法合成得到两种水溶性富勒烯乙二胺(EDA)衍生物C-(60)-(EDA)-3和Gd@C-(82)-(EDA)_8,并采用紫外-可见吸收光谱和荧光光谱法研究它们分别与牛血清白蛋白(BSA)和人血清白蛋白(HSA)相互作用机理.发现血清白蛋白最大吸收峰280nm处在和富勒烯乙二胺衍生物作用后发生1-2nm蓝移,可能是由于富勒烯乙二胺衍生物改变氨基酸残基的微环境所引起,表明药物与BSA和HSA发生了相互作用.荧光光谱分析表明,C60-(EDA)3和Gd@C-(82)-(EDA)_8均对BSA和HSA有明显荧光淬灭作用,且随着浓度的增大淬灭作用越强.研究结果表明,其荧光淬灭机制为静态淬灭,静态淬灭常数均大于10-4L/mol,进一步计算出结合常数均大于10-5L/mol,结合位点数约为1.三维荧光光谱研究结果发现,C-(60)-(EDA)_3和Gd@C_(82)-(EDA)-8与血清白蛋白相互结合时,可能导致BSA和HSA的色氨酸、酪氨酸和苯丙氨酸等具有光学活性的氨基酸残基的微环境发生改变.

  • 标签: C60-(EDA)3衍生物 Gd@C82-(EDA)8衍生物 血清白蛋白 荧光光谱 三维荧光