学科分类
/ 1
4 个结果
  • 简介:

  • 标签:
  • 简介:摘要BACKGROUND AND OBJECTIVESLong-term paired associative stimulation (PAS) is a non-invasive combination of transcranial magnetic stimulation and peripheral nerve stimulation and leads to improved hand motor function in individuals with incomplete traumatic tetraplegia. Spinal cord injuries (SCIs) can also be induced by neurological diseases. We tested a similar long-term PAS approach in patients with non-traumatic neurological SCI.METHODSIn this case series, five patients with non-traumatic tetraplegia received PAS to the weaker upper limb 3 to 5 times per week for 6 weeks. Patients were evaluated by manual muscle testing (MMT) before and immediately after the therapy and at the 1- and 6-month follow-ups. Patients were also evaluated for spasticity, hand mechanical and digital dynamometry, pinch test and Box and Block test.RESULTSMMT values of all patients improved at all post-PAS evaluations. The mean±standard error MMT increase was 1.44±0.37 points (P=0.043) immediately after PAS, 1.57±0.4 points (P=0.043) at the 1-month follow-up and 1.71±0.47 points (P=0.043) at the 6-month follow-up. The pinch test, digital dynamometry and Box and Block test results also improved in all patients.CONCLUSIONS Long-term PAS may be a safe and effective treatment for improving hand function in patients with non-traumatic tetraplegia.SIGNIFICANCEThis is the first report demonstrating the therapeutic potential of PAS for neurological SCI.

  • 标签:
  • 简介:

  • 标签:
  • 简介:AbstractBackground:Developing effective spinal cord repair strategies for spinal cord injury (SCI) is of great importance. Emerging evidence suggests that microRNAs (miRNAs) are closely linked to SCI recovery. This study aimed to investigate the function of miR-34c in the neuronal recovery in rats with SCI.Methods:A rat model with SCI was established. Differentially expressed miRNAs were identified by a microarray analysis. MiR-34c expression in rats was measured by reverse transcription quantitative polymerase chain reaction. Altered expression of miR-34c or C-X-C motif ligand 14 (CXCL14) was introduced in SCI rats to measure their roles in neuronal recovery. Western blot analysis was performed to determine the phosphorylation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription-3 (STAT3). Neuronal apoptosis in rat spinal cord tissues was detected. The concentrations of SCI recovery-related proteins thyrotropin releasing hormone (TRH), prostacyclin (PGI2), and ganglioside (GM) were evaluated by enzyme-linked immunosorbent assay. Data were analyzed using a t-test with a one-way or two-way analysis of variance.Results:Rats with SCI presented decreased grip strength (112.03 ± 10.64 vs. 17.32 ± 1.49 g, P < 0.01), decreased miR-34c expression (7 days: 3.78 ± 0.44 vs. 0.95 ± 0.10, P < 0.05), and increased CXCL14 expression (7 days: 0.61 ± 0.06 vs. 2.91 ± 0.27, P < 0.01). MiR-34c was found to directly bind to CXCL14. Overexpression of miR-34c increased grip strength (11.23 ± 1.08 vs. 31.26 ± 2.99 g, P < 0.01) and reduced neuronal apoptosis in spinal cord tissues (53.61% ± 6.07% vs. 24.59% ± 3.32%, P < 0.01), and silencing of CXCL14 also increased the grip strength (12.76 ± 1.13 vs. 29.77 ± 2.75 g, P < 0.01) and reduced apoptosis in spinal cord tissues (55.74% ± 6.24% vs. 26.75% ± 2.84%, P < 0.01). In addition, miR-34c upregulation or CXCL14 downregulation increased the concentrations of TRH, PGI2, and GM, and reduced phosphorylation of JAK2 and STAT3 in rats with SCI (all P < 0.01).Conclusion:The study provided evidence that miR-34c could promote neuronal recovery in rats with SCI through inhibiting CXCL14 expression and inactivating the JAK2/STAT3 pathway. This study may offer new insights into SCI treatment.

  • 标签: MIRN34C CXCL14 JAK2/STAT3 Spinal cord injury Apoptosis