学科分类
/ 1
4 个结果
  • 简介:

  • 标签:
  • 简介:AbstractBackground:Extra-corporeal video telescope operating monitor system provides a necessary instrument to perform high-precision neurosurgical procedures that could substitute or supplement the traditional surgical microscope. The present study was designed to evaluate a compact high-definition two-dimensional exoscope system for assisting in surgical removal of large vestibular schwannoma (VS), as an alternative to a binocular surgical microscope.Methods:Patients with Koos grade 3 and grade 4 VS undergoing surgery were enrolled in this prospective cohort study between January 2013 and June 2018. The demographics and tumor characteristics (size, Koos grade, composition [cystic or solid mass]) were matched between the two groups of patients. The following outcome measurements were compared between the two groups: duration of surgery, volume of blood loss, extent of tumor resection, number of operating field adjustments, pre- and post-operative facial and cochlear nerve function evaluated at 3 months post-surgery, complications and surgeons’ comfortability.Results:A total of 81 patients received tumor resection through the retrosigmoid approach under either an exoscope (cases, n = 39) or a surgical microscope (control, n = 42). Patients in the two groups had comparable tumor location (P = 0.439), Koos grading (P = 0.867), and composition (P = 0.891). While no significant differences in the duration of surgery (P = 0.172), extent of tumor resection (P = 0.858), facial function (P = 0.838), and hearing ability (P = 1.000), patients operated on under an exoscope had less blood loss (P = 0.036) and a fewer field adjustments (P < 0.001). Both primary and assistant surgeons reported a high level of comfort operating under the exoscope (P = 0.001 and P < 0.001, respectively).Conclusions:The compact high-definition two-dimensional exoscope system provides a safe and efficient means to assist in removing large VSs, as compared to a surgical microscope. After the acquaintance with a visual perception through a dynamic hint and stereoscopically viewing corresponding to the motion parallax, the exoscope system provided a comfortable, high-resolution visualization without compromising operational efficiency and patient safety.

  • 标签: Vestibular schwannoma Exoscope Telescope video monitor Operating microscope
  • 作者: Huang Ji-Hui Liao Hui Tan Xin-Yu Xing Wei-Rong Zhou Qi Zheng Yu-Shi Cao Hong-Yu Zeng Can-Jun
  • 学科: 医药卫生 >
  • 创建时间:2020-08-10
  • 出处:《中华医学杂志(英文版)》 2020年第04期
  • 机构:Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, China; Southern Medical University, Guangzhou, Guangdong 510515, China,Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, China,Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, CA 92357, USA;Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.,Southern Medical University, Guangzhou, Guangdong 510515, China
  • 简介:AbstractBackground:Surgical treatment of both-column acetabular fractures is challenging because of the complex acetabular fracture patterns and the curved surface of the acetabulum. Seldom study has compared the application of three-dimensional (3D) printing technology and traditional methods of contouring plates intra-operatively for the surgical treatment of both-column acetabular fractures. We presented the use of both 3D printing technology and a virtual simulation in pre-operative planning for both-column acetabular fractures. We hypothesized that 3D printing technology will assist orthopedic surgeons in shortening the surgical time and improving the clinical outcomes.Methods:Forty patients with both-column acetabular fractures were recruited in the randomized prospective case-control study from September 2013 to September 2017 for this prospective study (No. ChiCTR1900028230). We allocated the patients to two groups using block randomization (3D printing group, n = 20; conventional method group, n = 20). For the 3D printing group, 1:1 scaled pelvic models were created using 3D printing, and the plates were pre-contoured according to the pelvic models. The plates for the conventional method group were contoured during the operation without 3D printed pelvic models. The operation time, instrumentation time, time of intra-operative fluoroscopy, blood loss, number of times the approach was performed, blood transfusion, post-operative fracture reduction quality, hip joint function, and complications were recorded and compared between the two groups.Results:The operation and instrumentation times in the 3D printing group were significantly shorter (130.8 ± 29.2 min, t = -7.5, P < 0.001 and 32.1 ± 9.5 min, t = -6.5, P < 0.001, respectively) than those in the conventional method group. The amount of blood loss and blood transfusion in the 3D printing group were significantly lower (500 [400, 800] mL, Mann-Whitney U= 74.5, P < 0.001 and 0 [0,400] mL, Mann-Whitney U = 59.5, P < 0.001, respectively) than those in the conventional method group. The number of the approach performed in the 3D printing group was significantly smaller than that in the conventional method group (pararectus + Kocher-Langenbeck [K-L] approach rate: 35% vs. 85%; x2 = 10.4, P < 0.05). The time of intra-operative fluoroscopy in the 3D printing group was significantly shorter than that in the conventional method group (4.2 ± 1.8 vs. 7.7 ± 2.6 s; t = -5.0, P < 0.001). The post-operative fracture reduction quality in the 3D printing group was significantly better than that in the conventional method group (good reduction rate: 80% vs. 30%; x2 = 10.1, P < 0.05). The hip joint function (based on the Harris score 1 year after the operation) in the 3D printing group was significantly better than that in the conventional method group (excellent/good rate: 75% vs. 30%; x2 = 8.1, P < 0.05). The complication was similar in both groups (5.0% vs. 25%; x2 = 3.1, P = 0.182).Conclusions:The use of a pre-operative virtual simulation and 3D printing technology is a more effective method for treating bothcolumn acetabular fractures. This method can shorten the operation and instrumentation times, reduce blood loss, blood transfusion and the time of intra-operative fluoroscopy, and improve the post-operative fracture reduction quality.Clinical trail registration:No.ChiCTR1900028230; http://www.chictr.org.cn

  • 标签: Both-column Acetabulum fractures Computer simulation Three-dimensional printing Internal fracture fixation
  • 作者: Jin Yi-Peng Shi Chong Wu Yuan-Yi Sun Ji-Lei Gao Jiang-Ping Yang Yong
  • 学科: 医药卫生 >
  • 创建时间:2020-08-10
  • 出处:《中华医学杂志(英文版)》 2020年第04期
  • 机构:Department of Urology, Sixth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100048, China,The First Center of Department of Hepatobiliary Surgery, Fifth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100039, China,Department of Urology, Fourth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100048, China,Department of Urology, First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100853, China.
  • 简介:AbstractBackground:Traditional tissue engineering methods to fabricate urinary tract patch have some drawbacks such as compromised cell viability and uneven cell distribution within scaffold. In this study, we combined three-dimensional (3D) bioprinting and tissue engineering method to form a tissue-engineered urinary tract patch, which could be employed for the application on Beagles urinary tract defect mode to verify its effectiveness on urinary tract reconstruction.Methods:Human adipose-derived stem cells (hADSCs) were dropped into smooth muscle differentiation medium to generate induced microtissues (ID-MTs), flow cytometry was utilized to detect the positive percentage for CD44, CD105, CD45, and CD34 of hADSCs. Expression of vascular endothelial growth factor A (VEGFA) and tumor necrosis factor-stimulated gene-6 (TSG-6) in hADSCs and MTs were identified by Western blotting. Then the ID-MTs were employed for 3D bioprinting. The bioprinted structure was encapsulated by transplantation into the subcutaneous tissue of nude mice for 1 week. After retrieval of the encapsulated structure, hematoxylin and eosin and Masson’s trichrome staining were performed to demonstrate the morphology and reveal collagen and smooth muscle fibers, integral optical density (IOD) and area of interest were calculated for further semiquantitative analysis. Immunofluorescent double staining of CD31 and α-smooth muscle actin (α-SMA) were used to reveal vascularization of the encapsulated structure. Immunohistochemistry was performed to evaluate the expression of interleukin-2 (IL-2), α-SMA, and smoothelin of the MTs in the implanted structure. Afterward, the encapsulated structure was seeded with human urothelial cells. Immunofluorescent staining of cytokeratins AE1/AE3 was applied to inspect the morphology of seeded encapsulated structure.Results:The semi-quantitative assay showed that the relative protein expression of VEGFA was 0.355 ± 0.038 in the hADSCs vs. 0.649 ± 0.150 in the MTs (t = 3.291, P = 0.030), while TSG-6 expression was 0.492 ± 0.092 in the hADSCs vs. 1.256 ± 0.401 in the MTs (t = 3.216, P = 0.032). The semi-quantitative analysis showed that the mean IOD of IL-2 in the MT group was 7.67 ± 1.26, while 12.6 ± 4.79 in the hADSCs group, but semi-quantitative analysis showed that there was no statistical significance in the difference between the two groups (t = 1.724, P = 0.16). The semi-quantitative analysis showed that IOD was 71.7 ± 14.2 in non-induced MTs (NI-MTs) vs. 35.7 ± 11.4 in ID-MTs for collagen fibers (t = 3.428, P = 0.027) and 12.8 ± 1.9 in NI-MTs vs. 30.6 ± 8.9 in ID-MTs for smooth muscle fibers (t= 3.369, P = 0.028); furthermore, the mean IOD was 0.0613 ± 0.0172 in ID-MTs vs. 0.0017 ± 0.0009 in NI-MTs for α-SMA (t = 5.994, P = 0.027), while 0.0355 ± 0.0128 in ID-MTs vs. 0.0035 ± 0.0022 in NI-MTs for smoothelin (t= 4.268, P = 0.013), which indicate that 3D bioprinted structure containing ID-MTs could mimic the smooth muscle layer of native urinary tract. After encapsulation of the urinary tract patch for additional cell adhesion, urothelial cells were seeded onto the encapsulated structures, and a monolayer urothelial cell was observed.Conclusion:Through 3D bioprinting and tissue engineering methods, we provided a promising way to fabricate tissue-engineered urinary tract patch for further investigation.

  • 标签: Human adipose-derived stem cells Urinary tract patch Microtissues Tissue engineering Three-dimensional bioprinting