学科分类
/ 25
500 个结果
  • 简介:摘要:催化在煤炭生产甲醇中起着重要的作用。在甲醇合成过程中,会产生H2S、SO2等有毒有害气体。这些有毒有毒有毒气体与甲醇合成触媒的Cu及Zn元素发生化学反应,由于触媒被毒化而被失活,所以变成已使用触媒的触媒不能起到催化的作用。填埋的话,不仅仅是重金属,被惰性化了的触媒的cu和Zn也会污染。通过采用水分和干旱的组合方法,研究了回收过程。已使用的催化中的铜和Zn获得氧化铜和锌。氧化物。氧化铜和氧化锌不仅可回收用于二次利用,还可获得一些经济利益,提高企业市场竞争力,找到了有效解决工业固体废弃物造成环境污染问题的办法。

  • 标签: 废催化剂 铜锌 回收
  • 简介:摘要:科技的进步,促进人们对能源需求的增多。伴随国家能源结构及产业政策调整,延伸煤炭产业链,成为了各大煤企长效发展的必经之路。由于煤制甲醇具有技术成熟、运行成本低、投资相对较少等特点,成为各大企业首选。甲醇合成采用英国戴维公司提供的气冷-水冷式反应器串联工艺路线,该技术是国内首次引进的甲醇合成生产技术(据了解国内只有2家企业使用类似装置,即凯越煤化公司和中煤远新)。戴维气冷-水冷串联式甲醇合成反应器工艺采用1台管壳式水冷甲醇合成反应器和1台气冷式气甲醇合成反应器串联的方式进行甲醇合成。水冷式反应器为管壳式反应器,催化装填在管程内,壳程为饱和沸腾水,管内合成反应放出的热量传递给管外的沸腾水,沸腾水气化成饱和蒸汽后进入合成汽包。本文就甲醇合成装置催化寿命缩短原因分析及解决措施展开探讨。

  • 标签: 甲醇合成 戴维反应器 催化剂
  • 简介:摘要:甲醇不仅是重要的有机化工原料,还是性能优良的能源和车用原料。随着石油资源的不断开采和利用,以煤、天然气制甲醇的工艺路线越来越显示出重要性。国家能源集团宁夏煤业有限公司煤制油装置年产100万t·a-1的甲醇合成单元以煤为原料,在催化存在下,用一氧化碳和氢气(俗称合成气)加压加温来制造甲醇

  • 标签: 燃料电池 甲醇电催化反应 催化剂 酸性环境
  • 简介:摘要:基于甲醇重整燃料电池系统,通过模拟反应参数变化对催化性能影响表明,在稳态运行及瞬态变载过程中甲醇转化率和一氧化碳含量随体系温度的升高而增大;在反应空速应0.3/h时,催化及反应原料可以达到最佳利用率;根据催化实际连续运行反应350小时计算的甲醇反应速率变化规律,预估催化的使用寿命可以达到8万小时。 关键词:甲醇;蒸汽重整;制氢;燃料电池; 0 引言 能源对人类的可持续经济发展和环境至关重要,所以能源科技一直是我们研究的重点,寻找更好的能源类型和提高能源的使用效率成为当代人的责任。目前,采用纯氢气供给的质子交换膜燃料电池被认为是替代传统低效率、高污染的电池或内燃机的最有前途的技术之一[1]。然而,高压氢气的存储和运输一直阻碍着燃料电池的广泛应用,因此使用液体燃料作为替代方案成为新型能源电池的研究热点。 甲醇具有可再生及成本优势,以“现场制氢、即产即用”的工作模式特点,使得甲醇重整燃料电池系统在大规模应用上具有可行性[2]。它主要包含燃料电池和氢气发生装置。按照能源转换的路径,可以分为储液系统、制氢系统、发电系统、用电系统、控制系统五个部分。 图1. 甲醇燃料电池系统示意图 目前,甲醇制氢有三种方法:甲醇分解制氢,甲醇部分氧化制氢,甲醇水蒸气重整制氢。甲醇分解制得的氢气中含有较多的CO,不宜用在燃料电池电动车上,其他两种方法制得的氢气均可用于燃料电池电动车。甲醇水蒸气重整反应系统简单,产物中H2含量高,CO含量低,是电动汽车燃料电池的理想供氢来源[3][4][5][]。反应如下: (1-1) (1-2) (1-3) 为模拟系统不同工况条件下,对催化性能的影响,结合实际工况条件在不同反应温度、不同空速条件下对重整催化进行对原料配比,反应温度,反应压力,进液空速等工艺条件进行评估研究,以研究催化的最佳使用效果的操作条件。 实验 催化 目前市面上的甲醇重整催化众多,但是质量参差不齐。为挑选适合甲醇重整燃料电池系统适用的甲醇重整催化,广泛筛选国内外知名催化厂商,最终选定A、B两款催化作为研究对象用于测试分析。 性能评价表征 催化评价装置的工艺流程由六个系统组成:进料系统、辅助系统、预热系统、反应系统、冷凝分离系统、分析系统。 图2. 催化性能测试装置流程图 数据处理方法 通过产物气体流量、组成含量和反应物进料量,根据碳平衡原理按照公式(2-1)计算甲醇转化率,根据公式(2-2)计算得到氢气产生效率,根据公式(2-3)计算得到催化甲醇反应速率。 (2-1) (2-2) (2-3) 式中,FR为标况下的重整尾气流量(ml/min),ΦH2、ΦCH4、ΦCO、ΦCO2分别为尾气中H2、CH4、CO、CO2的含量,F为液体进料量(ml/min),ρ为混合液密度(g/ml),υ为催化体积(ml)。 实验结果及分析 温度对催化性能的影响 系统从冷启动到稳态输出的过程中,反应器的温度从室温上升至适当的温度。为模拟该过程中温度变化对催化的影响,在固定反应空速条件下,测试表征催化性能,详细结果如图3(a)、(b)所示。 图3系统启动过程中,温度变化对(a)甲醇转化率和(b)CO含量的影响。 如图3(a)中的“A-1.5”表示A款催化在反应空速1.5/h时,随温度的升高甲醇转化率逐渐增大。这是由于随着温度的升高,反应物分子更加活跃,反应物跟催化的接触更加充分。另外如公式(1-1)所示为吸热反应,升高体系温度有利于促进化学平衡向正向移动[4]。B款催化甲醇转化率随温度的变化趋势同A类似,但是在相同温度时B款催化甲醇转化率性能明显低于A款催化,尤其是在0.5/h空速时差距更大。 从图3(b)中可以看出,A款和B款催化在反应空速0.5/h和1.5/h时,出口CO含量都随着温度的升高呈上升趋势,这是由于根据文献报道[4]重整反应产物中CO是通过公式(1-2)逆水汽变换反应产生,该反应为吸热反应,因此升高温度会导致CO含量的增加。另外,从图3(a)、(b)中可以看出,同款催化在相同温度时,空速越小甲醇转化率越高且CO含量越高。 反应空速对性能的影响 甲醇重整燃料电池系统稳定运行后,会根据外部供电设备需求,对发电功率进行调节。此时各反应器的温度已达到相对稳定的状态,因此需要改变甲醇燃料的输入量从而达到调节发电输出功率的目的。为模拟系统稳定运行过程中负载变化对催化的影响,因此在固定外部供热源的条件下,测试催化在不同空速时的性能,详细结果如图4(a)、(b)所示。 图4系统发电功率变载过程中,(a)CO含量和(b)甲醇转化率随反应空速变化情况。 如图4(a)所示,在外部供热源稳定在240℃工况下,催化床层温度随着反应空速的增加而降低。这是由于当空速增加时,甲醇重整反应如公式(1-1)所示为强吸热反应,单位时间内进入催化床层的反应物料增多,因此需要吸收更多的热量,从而导致床层温度降低。相应的出口CO含量都随着空速的增多呈下降趋势,这是由于甲醇重整反应吸热导致床层温度降低,进而导致逆水汽变换反应程度减弱因此CO含量降低。 如图4(b)所示,甲醇转化率随着反应空速的增大,呈现出先升高后降低的趋势。结合图3(a)数据分析,在温度不变的情况下空速越低甲醇转化率越高;图4(a)催化床层温度随空速的增加逐渐降低,且温度越低甲醇转化率越低。因此图4(b)中的甲醇转化率受到反应空速和反应温度的双重影响,呈现出先增加后降低的趋势,且在反应空速0.3/h时,甲醇转化率达到最大值。 另外,图4(b)中所示的单位反应原料的氢气时空产生效率同甲醇转化率表现出相同的变化规律,在反应空速0.3/h时达到最大值。因此,为最大程度发挥催化的作用及燃料利用率,系统最佳反应空速为0.3/h。 长期运行稳定性测试及寿命测试 为了考察催化的稳定性,按照系统额定功率等同空速条件,在350℃条件下连续运行,间隔一定时间后采集催化性能数据,如表1所示。 表1.连续运行不同阶段甲醇转化率 时间 h 220℃ 240℃ 260℃ 280℃ 5 65 78 90 98 350 56 72 82 90

  • 标签:
  • 简介:

  • 标签:
  • 简介:摘要:有效实现寓教于乐,积极地强化数学课堂教学,对于激发学生兴趣、带动学生参与、唤醒学生学习活力等,具有非常积极地促进价值。在当今时代,教师也应该努力提高自身教学水平,积极地实现寓教于乐,并根据小学生心理特征,在教学过程中尽可能的以乐观向上、活跃的氛围来调动学生,使课堂更加有朝气、有活力、有吸引力,继而真正的实现课堂教学的寓教于乐。本篇论文主要从小学数学教学中寓教于乐这一理念来进行讨论,其主要通过三个方面来进行展开。

  • 标签: 小学数学 课堂教学 寓教于乐 探究
  • 简介:摘要:介绍了水处理、热回收和热回收再生、酸再生和二氧化碳回收作为烟气净化、SCR和热氧化再生催化的发展,分析了SCR催化流失的主要原因,需要一种或多种合适的再生方法来改善或减少催化的损失。

  • 标签: 烟气脱硝 选择性催化还原 催化剂再生
  • 简介:摘要:随着社会的发展,电子产品、社会氛围、不良作息等因素导致越来越多的青少年出现了心理问题,他们无心向学,在学业上也遇到了很多难题。针对学困生面积越来越大的问题,本文围绕激励教育模式对学困生的转化进行了阐述,目的在于探索如何拓展素质教育、重塑学生信心。

  • 标签: 激励 学困生 转化 催化剂
  • 简介:

  • 标签:
  • 简介:摘要:以流态化技术作为基础的催化裂化工艺是原油二次加工的有效途径,对我国石化工业发展有着重要意义。结合实际工况分析催化裂化装置中催化出现流化输送异常的原因,发现这与催化筛分变化和催化床层运行情况有关,经过研究分析提出针对性解决措施,即选择合适的催化强度,保持细粉含量;对催化松动点与松动风加以调整;控制沉降器和再生器的压力平衡。

  • 标签: 催化裂化装置 流化床 催化剂 流化异常
  • 简介:【摘要】:由于疫情,课堂被搬到了空中,教室架到了网上。教师、学生、家长积极打开了线上学习模式。疫情作为无能为力的灾害,也在无形中成了一良好的催化催化着我们如何千方百计实现线上教学、无缝对接的课后辅导、跨越时空的直播重播,以达到最优的效益,促进现代教育技术及时、积极、迅速地发展。疫情期间的教育信息化之路,已为我们铺好了一条实实在在的解决问题的道路,我们或将沿着这条轨迹,循迹现代教育技术的动态,将技术的应用真正惠及师生。

  • 标签: 信息化 现代教育技术 直播
  • 简介:摘要:在当前大气污染治理和能源结构调整的新形势下,SCR 脱硝装置运行稳定性、可靠性、经济性问题日益凸显,而开展脱硝催化全寿命管理工作是解决这一问题的关键所在。针对当前国内催化市场、脱硝装置运维、检测现状,提出针对催化本体及其使用环境,分别在运行、维护、再生阶段可以展开的研究和优化方向,通过监视脱硝系统状况、建立在线监视、预测催化的活性,做出针对性的诊断分析,提前进行干预,减缓催化的衰减或改善其运行条件,以延长催化的使用寿命,是一种基于解决电厂实际问题的研究方向。

  • 标签: 脱硝 催化剂 全寿命管理。
  • 简介:摘要:炔烃是一类重要的化工产物,炔烃选择性氢化制烯烃是石油化工以及精细化工中的重要过程。目前研究较多的催化主要是金属合金、负载型单原子催化等。合作团队提出一种不同的催化设计策略,利用碱(土)金属稳定金属氢化物制备出三元配位氢化物催化,用于炔烃选择加氢反应,通过催化中的阴离子和碱土金属阳离子协同作用调控炔烃、烯烃及反应中间体的吸附与加氢能垒,实现炔烃高选择性氢化制烯烃。

  • 标签: 新型催化剂 炔烃加氢制烯烃 加氢工艺
  • 简介:摘要:低温脱硝催化工业应用的瓶颈问题是抗硫性差。本文对催化低温抗硫脱硝性能的影响因素进行了归纳总结,认为添加保护活性中心、促进硫酸铵盐分解、提高表面酸性和氧化还原能力的助剂、采用合适制备方法、对载体预处理,以及对催化进行预硫化均会影响低温脱硝催化的抗硫性能。但SO2中毒位置和中毒机理不明确是阻碍低温脱硝催化工业应用的主要因素,这也是低温脱硝催化的发展方向。

  • 标签: 低温脱硝催化剂 抗硫性 助剂 分步水热法 预硫化 中毒
  • 简介:摘要:柴油加氢精制催化制备技术对于柴油产品质量提升影响较大,从而间接影响相关企业的产品竞争力和可持续发展目标的实现,因此,在注重相关研究投入,通过催化制备质量的提升,强化柴油加氢精制效果。本文在研究中,探究柴油加氢精制工艺原理,分析柴油加氢精制催化制备技术,并进行柴油加氢精制催化制备实践,从而为相关工作开展提供有益借鉴。

  • 标签: 柴油加氢精制 催化剂 制备技术
  • 简介:摘要:利用智慧课堂教学苏教版五年级下册《圆的认识》一课,课前,基于学生的认知,智慧“备”。课中,立足数学的核心素养,开展智慧“教”,基于学生的课堂生成智慧“学”,针对学生有导向的智慧“评”。课后,从学生出发的个性化的智慧“辅”。从而建构一个高效交互、循序渐进的理解概念的过程。

  • 标签: 智慧课堂 圆的认识 高效交互
  • 简介:摘要:催化在其催化裂化中,若能加强气力输送装置的优化设计,能够提升催化生产力,使其在多个领域中发挥出真正效用。在此之上,本文简要分析了催化裂化催化气力输送装置的工作原理,并通过微调气力输送装置参数、明确装置分布安装位置、投料口新增振动筛过滤网、出料口增设风吹扫系统等路径,改善催化生产环境。

  • 标签: 催化剂 催化裂化 气力输送装置
  • 简介:摘要:讨论催化裂化催化抗重金属技术的应用,首先介绍催化裂化催化,并探讨重金属元素对于催化的危害,重点介绍抗镍污染技术、抗钒污染技术、抗铁污染技术、抗钠污染技术四种技术的运用,了解催化裂化催化抗重金属技术优势,为解决催化污染问题明确思路。

  • 标签: 催化裂化 催化剂 抗重金属技术
  • 简介:摘要:伴随着我国社会高速的发展和经济持续的增长,人们生活水平的不断提高,与此同时, 大众对于自然资源的需求量也变得越来越大。通过认真、细致的调查发现,在石油炼制的过程当中,运用数量最大的催化当属催化裂化催化。本文主要对石油催化裂化催化生产废水减排技术进行了分析,研究了其中存在的问题,并提出了发展的趋势,以做参考。

  • 标签: 石油 催化裂化催化剂 生产 废水 减排技术
  • 简介:摘要:某催化裂化装置检修期间对再生器八组旋分器进行了原型更新,但开工后,催化单耗一直处于较高水平,通过分析排查,发现催化单耗较高的原因为再生系统跑所致,本文对该装置开工初期催化单耗较高的原因进行了分析探讨,对实际操作有一定指导意义。

  • 标签: 催化裂化 催化剂 跑损 单耗