学科分类
/ 1
16 个结果
  • 简介:介绍了高功率一次Li-FeS2电池的结构和技术性能;论述了温度和贮存时间对电池放电性能的影响;报导了AA型Li-FeS2和碱性锌锰电池定电阻、定功率放电试验结果,以及在数码相机上实际使用的对比结果;分析了Li-FeS2电池的可充性和安全性.

  • 标签: 锂电池 锂一二硫化铁 高功率 放电测试
  • 简介:虽然不具有实际应用的价值,Li2MeO3阴极电化学脱嵌锂行为研究对于理解其它正极材料电化学脱嵌锂仍然十分重要,未见相关综述。其中Li2MnO3是层状富锂锰基正极材料的主要相组成成份,对其研究结果对于富锂锰基正极材料的电化学性能改进具有重要指导意义。本文简要综述了该系列材料的国内外研究现状。

  • 标签: 锂离子电池 正极材料 电化学容量
  • 简介:采用XRD、XPS、IR、ICP-AES、循环伏安、恒电流充放电等方法对LiCoO2掺杂Na高温固相化学反应合成的Li1-xNaxCoO2材料的结构及电化学性能进行了系统研究。结果表明,当掺杂Na的量x〉0.05后,Li/Li1-xNaxCoO2电池的充、放电容量较Li/LiCoO2的明显下降。随x从0.0增至0.3时,Li/Li1-xNaxCoO2电池以0.5mA/cm^2充电容量由146.3mAh/g下降至130.0mAh/g,放电容量则由110.6mAh/g下降至80.0mAh/g,但工作电压平台均为3.6V。XRD结果显示,随x的增大,Li1-xNaxCoO2的六方晶胞参数a没有统计学上的差异,而晶胞参数c则逐渐减小。但当x〉0.25后,其中有NaCoO2产生。相同x的Li1-xNaxCoO2充电后的六方晶胞参数c比未充电的有所增大,而晶胞参数a则略微缩小。但是当x〉0.25后,出现3个NaCoO2的特征衍射峰。然而,以0.5mA/cm^2充电至4.4V后,Li1-xNaxCoO2的六方晶胞参数c均增大,a略减小。XPS结果表明,随x增大,Li1s的电子结合能有增大趋势,但O1s和Na1s及Co2p3/2和Co2p1/2电子结合能变化很小。与LiCoO2相比,Li1-xNaxCoO2的循环伏安并没有新的氧化还原峰产生。

  • 标签: 锂离子电池 锂电池 LICOO2 Li1-xNaxCoO2
  • 简介:用溶胶-凝胶法合成了掺钴的尖晶石锰酸锂Li1.05Co0.05Mn1.95O4,由于Co^3+的引入使得材料结构更加稳定,循环稳定性增强。材料在0.1C下首次放电比容量为105.2mAh/g,循环20次后为104.3mAh/g,容量保持率为99.1%;1C下首次放电比容量为92.4mAh/g,循环20次后放电比容量为91.1mAh/g,容量保持率为98.5%。电池在充电前电荷转移电阻Rct很大,锂离子扩散系数较小,1C循环结束后电极的电荷转移电阻Rct最大为225.2Ω,0.5C循环结束后电极的锂离子扩散系数DLi+最大为6.16×10^-5m^2/s。

  • 标签: 锂离子电池 尖晶石掺钴锰酸锂 EIS图谱 电荷转移电阻Rct 锂离子扩散系数
  • 简介:以醋酸锂和钛酸四丁酯为原料、冰醋酸和无水乙醇为水解抑制剂和溶剂,采用溶胶-凝胶法经高温烧结制备了纳米Li4Ti5O12负极材料,系统研究了烧结工艺对材料组成、结构和电化学性能的影响。研究表明,烧结温度是影响材料性能的最主要因素,恒温时间次之。采用两步烧结法,将所得前驱体以5℃/min的速率升温到600℃,保温6h,然后升温至750-850℃,保温1~10h,所制备的Li4Ti5O12结晶程度高,粒径在5001-1m左右;在1-2.5V之间充放电,0.2C、1C、5C和10C倍率下首次放电比容量分别达到168.6mAh/g、155.1mAh/g、139.4mAh/g和121.1mAh/g。

  • 标签: LI4TI5O12 溶胶-凝胶法 烧结工艺 结构 电化学性能
  • 简介:以LiOH为锂源,C16H36O4Ti为钛源,采用液相法制备Li4Ti5O12样品,并考察了烧结温度及热处理时间对材料的影响。为提高Li4Ti5O12的导电性,实验选取PVA为碳源以制备Li4Ti5O12/C材料。结果表明,Li4Ti5O12经5%及10%质量分数的PVA热解处理后,所得Li4Ti5O12/C的常温循环稳定性、倍率性能得到显著改善。5C倍率下60次充放电循环后,5%、10%质量分数Li4Ti5O12/C材料分别可保持123mAh/g、125mAh/g的放电容量。

  • 标签: 锂离子电池材料 负极材料 碳改性 Li4Ti5O12/C
  • 简介:采用溶胶-凝胶法制备了不同Li含量的LiMnO2。采用XRD和SEM研究不同锂含量对于材料结构和形貌的影响。采用恒流充放电研究材料的电化学性能。研究表明,在800℃氮气保护下煅烧8h,Li/Mn=1.05的材料具有完整的正交层状结构,在0.2C的放电倍率下,表现出了最好的电化学性能,最大放电容量为173.03mAh/g,经过30次循环后的放电容量维持在172.39mAh/g。

  • 标签: 锂离子电池 正极材料 LIMNO2
  • 简介:采用LiMn2O4为正极材料,Li4Ti5O12为负极材料制成了26650/2500mAh的锂离子电池,该电池10C放电容量能够达到1.0C放电容量的97.30%,电池在-20℃的条件下以0.5C放电,能够放出25℃条件下容量的98.72%,在55℃的条件下以0.5C放电,能够放出25℃条件下容量的97.83%,1.0C循环测试200次后,容量剩余率为96.10%;电池以3.0C倍率过充到20.0V,没有爆炸和起火,经过针刺短路之后,没有爆炸和起火,电池表面最高温度不超过90℃。

  • 标签: LI4TI5O12 锂离子电池 负极材料 LIMN2O4 电性能
  • 简介:通过固相法和溶胶-凝胶法合成不同碳含量的磷酸钒锂/C正极材料,研究了作为碳源的蔗糖和柠檬酸添加量对产物电化学性能的影响.实验发现,在固相合成方法中,添加量高于10.5%(质量百分数)时进一步增加蔗糖添加量后产物放电容量变化不明显.但是在溶胶-凝胶合成方法中,柠檬酸的添加量存在最佳值,高于或者低于此最佳数值都会引起产物容量的降低,这是与固相合成技术的一个明显不同之处.另一点不同之处在于对于溶胶凝胶合成的样品,最佳添加量与产物的工作电流有关.本实验条件下,在0.2C倍率以下柠檬酸与氢氧化锂最佳比值为1∶3,但是在放电倍率高于0.5C时最佳比值为1∶2.

  • 标签: 磷酸钒锂 锂离子电池 电化学性能
  • 简介:采用容量间歇滴定法(CITT)测定过放后的LiFePO4电池中Li+的固相扩散系数。结果表明,在3.15~3.65V的电压范围内,扩散系数曲线呈"V"形状,在3.45~4.10V的电压范围内,扩散系数曲线呈"M"形状,其中,在3.65V时扩散系数最大,为2.0×10-11cm2/s;在3.39V时则最小,为1.8×10-12cm2/s。

  • 标签: 锂离子电池 容量间歇滴定技术 固相扩散系数
  • 简介:层状结构材料Li1+xV3O8有可能成为新一代锂离子电池正极材料。综述了锂离子电池正极材料的结构特点,重点介绍了国内外Li1+xV3O8的几种合成方法,分析了Li1+xV3O8的掺杂改性研究,总结了正极材料Li1+xV3O8的充放电工作原理,并展望了锂离子电池正极材料Li1+xV3O8未来应用前景。

  • 标签: 锂离子电池 正极材料Li1+xV3O8 合成方法 掺杂改性
  • 简介:概述了高温固相合成、熔盐工艺、溶胶-凝胶工艺、水热工艺等钛酸锂负极材料的制备技术,分析了钛酸锂电池在储能、高铁辅助蓄电、新能源汽车领域的应用及发展前景,同时对钛酸锂行业所面临的问题与挑战进行归纳总结。

  • 标签: 钛酸锂 负极材料 锂电池
  • 简介:介绍了采用高温固相法合成掺铬Li4Ti5O12作为锂离子电池负极材料,并对材料进行了X射线衍射分析、SEM、电化学阻抗测试、循环伏安测试及恒电流充放电测试。铬的掺杂并未改变材料的晶体结构,但降低了材料的规整度。实验结果表明:铬的掺杂在一定程度上改善了锂钛氧化合物的电化学性能,降低了电极极化,在电极表面未形成钝化膜。其中以掺杂比为Cr∶Ti=1∶10(原子比)的材料性能最好,首次放电比容量可达到175mAh/g,经过50次循环后,放电容量仍保持在166.5mAh/g。

  • 标签: 锂离子电池 负极材料 LI4TI5O12 掺杂
  • 简介:探讨了锂离子电池三元正极材料LizN1-x-yCoxMnyO2中过渡金属的平均价态分析方法。样品用盐酸溶解后,在pH值为9至10的情况下,以紫脲酸胺为指示剂,EDTA滴定过渡金属总含量,该方法简单、快速、准确高,测定结果的RSD为0.06%~0.20%。采用间接草酸钠还原滴定,测出三元正极材料中三价过渡金属的总量,也即在稀硫酸介质中,试样被定量的草酸钠还原溶解,剩余的草酸钠用高锰酸钾标准溶液滴定,从而测出试样中三价过渡金属的总量,测定结果的RSD为0.17%~0.50%。将这两种方法结合在一起,就可以求出三元正极材料中过渡金属的平均价态,从而为探讨三元正极材料性能提供重要的指导意义。

  • 标签: 过渡金属 平均价态 间接草酸钠还原滴定 三元正极材料
  • 简介:采用共沉淀法制备了不同Zn掺杂量的Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0-0.08)固溶体,通过X射线衍射(XRD)和光电子能谱(XPS)分析,研究了不同Zn掺杂量对Li(Ni1/3Co1/3Mn1/3)1-xZnxO2固溶体晶体结构和过渡金属表面化学状态的影响。实验结果表明:当Zn掺杂量x小于0.006时,固溶体材料具有稳定的层状结构;微量Zn的掺杂能够增强晶体材料的整体键能。

  • 标签: LI(NI1/3CO1/3MN1/3)O2 锂离子电池 正极材料 XPS