学科分类
/ 25
500 个结果
  • 简介:摘要:加氢裂化技术的使用优势明显,其加工的生油种类更广,适应性更大,对于液态产物,产量更高,对精炼企业的经济效益更好。现有的加氢裂解系统仍有一些技术上的缺陷。为此,项目拟从低温和高温两个方面对高质量的流型进行研究,从低温和高温两个方面对高质量的流型进行研究,并以循环氢气为主要研究对象,对低温和高温两个方面进行研究。针对反应区,研究其传热过程的优化,针对液化石油气的回收率,研究其在循环过程中的应用;针对高温高压力油藏,研究其工作温度的优化。

  • 标签: 加氢裂化装置 工艺优化 改造设计
  • 简介:摘要蒸汽裂解产物中的碳三物流含有质量分数为4%左右的丙炔(MA)、丙二烯(PD),这些杂质会影响下游工段的生产,如丙烯聚合、羰基合成等,必须脱除至15μg/g以下,采用部分加氢产品冷却后循环的方法,以降低入口的物流中炔及二烯烃的含量,吸收部分热量;加氢过程中会有聚合物粘附在催化剂表面上,使催化剂逐步失去活性,需定期再生,必须设置备用反应器以维持生产过程的连续性。将碳三加氢催化剂装入高压脱丙烷塔,在完成碳三、碳四分离的同时实现了丙炔、丙二烯的加氢

  • 标签: 催化蒸馏 选择加氢 催化剂
  • 简介:摘要:柴油加氢装置操作工况苛刻,而且随着原料性质、加工负荷、设备运行等条件的变化,偏离设计的操作工况。高压系统反应产物-低分油换热器管程介质操作温度逐渐降低,反应产物中的氯化铵结晶点前移,易在换热器管束中沉积,使高压系统压力降持续增大,同时结晶铵盐的垢下腐蚀导致管束内漏,严重影响装置的安全运行。分析了铵盐结晶原因和计算了换热器氯化铵析出温度点,从生产运行的角度提出并实施防腐蚀措施,有效地遏制了高压系统压力降增大,延长了换热器管束使用寿命。

  • 标签: 柴油加氢装置 反应产物-低分油换热器 铵盐结晶 垢下腐蚀
  • 简介:

  • 标签:
  • 简介:摘要某石化馏份油加氢装置安装有1台加氢改质反应器,该反应器于2008年3月投用,2010年5月装置大修,反应器首次压检,未发现堆焊层裂纹缺陷,安全等级评定为3级;2013年5月装置大修,反应器第2次压检,检验发现反应器顶部分配盘支撑圈下部手工堆焊处存在11处裂纹,10处较浅裂纹打磨、补焊耐蚀层后消除,1处裂纹深入过渡层但未到基层,补焊中随焊随裂、缺陷不断扩大,未再处理,安全等级评定为4级、监护运行;2015年10月装置大修,反应器第3次压检,检验发现反应器顶部分配盘支撑圈上、下部手工堆焊处存在8处裂纹(其中1处裂纹为2013年遗留),8处裂纹返修全部消除,安全等级评定为3级;2018年10月装置大修,反应器第4次压检,对2015年返修的8处裂纹进行检查,未发现再裂。

  • 标签: 加氢反应器 堆焊层 裂纹 补焊 热处理
  • 简介:摘要:分析了催化重整装置氯腐蚀的原因和危害,通过借鉴相关炼厂的操作经验并结合装置的实际情况,某市石化 180万吨 /年催化重整 (II)采取一系列措施防止或减缓了装置氯腐蚀。操作方面包括提高催化剂干燥温度、控制循环氢中的水含量,脱戊烷塔、脱丁烷塔定期水洗,控制氯吸附温度。工艺方面包括脱戊烷塔进料前增设脱氯罐,氯吸附区低温易腐蚀部位改善伴热并定期监控。从源头上控制水含量,减少了再生系统氯注入量及氯腐蚀。装置开工 21个月以来,未发生任何氯腐蚀问题,表明所采取的防止或减缓氯腐蚀的措施是有效的。

  • 标签: 催化重整 Chlorsorb 氯腐蚀 脱戊烷塔
  • 简介:2013年5月21日,在十建公司、上海石化高桥分公司的共同努力下,高桥炼化260万t/a柴油质量升级项目(RTS装置)最具难度的K802汽轮机单试成功,标志着柴油加氢精制(RTS)装置大型压缩机组试车开始。该柴油质量升级项目为国家重点工程,该项目的建成将为上海市提供欧V标准的超低硫柴油。

  • 标签: 柴油加氢装置 大型压缩机组 试车 质量升级 超低硫柴油 上海石化
  • 简介:摘要:在我国石油产业不断发展的过程中,必须加强环境保护工作,降低石油炼制过程中的能源消耗量,提高石油产业的经济效益与生态效益。目前,在对石油生产过程中的加氢裂化装置节能措施进行分析时,需要了解加氢裂化装置存在的能耗问题,才能够采取有针对性的措施,降低加氢裂化装置能耗,提高其节能环保水平。

  • 标签: 加氢裂化装置 节能措施 应用要点
  • 简介:摘要苯加氢设备在2012年3月的时候进行投产,在运行一年多之后就已经比较稳定了,得到工业化行业的认可,不管是在处理能力方面还是产品的质量方面都达到了设计指标的要求。但是在实际的运行过程中苯加氢设备还是存在一定的问题,比如苯加氢设备的堵塞问题已经成为了工业化行业比较头痛的问题之一,苯加氢设备的堵塞不仅让工业化生产周期安全得不到保障,同时也使得苯加氢设备停产检修的次数增多了,从而影响到了苯加氢设备的使用寿命。本文就以苯加氢设备堵塞的原因展开分析,并且提出一些解决的方法,供参考。

  • 标签: 苯加氢设备 堵塞 解决方法
  • 简介:摘要:煤焦油具有干点高、沥青质和胶质含量高、馏程宽、机械杂质含量大等特点,现如今有五种典型的煤焦油加氢工艺广泛应用在工业中。本文将主要对这五种煤焦油加氢工艺进行对比分析,希望可以为实现全馏分煤焦油的完全转化提供参考。

  • 标签: 煤焦油加氢工艺 对比分析
  • 简介:摘要针对加氢装置新氢增压机富裕量过大,不利于节能的情况,分别采用安装气量无级调节系统和建立8.0MPa氢气管网的方式,进行节能改造,取得了较好的效果,达到了节电、节能的目的。

  • 标签: 装置 压缩机 无级调节 优化 节能
  • 简介:摘要:介绍了中国石油四川石化有限责任公司 300万吨 /年柴油加氢裂化装置改造后的情况 [1],对标定期间装置的原料数据、产品质量及收率、操作进行分析、找出生产问题存在的问题。结果表明,装置运行平稳,催化剂性能良好,产品质量优良且分布合理,液体收率等都在指标范围内,基本达到了预期目标,说明装置改造和运行都比较成功。

  • 标签: 柴油加氢裂化 标定 改造
  • 简介:摘要:由于我国社会经济的不断发展,致使多方面的资源缺失和环境污染等问题不断的加速,因此,人们对节能环保的意识度逐渐增加。随着可持续发展意识在社会发展中影响力度的不断增加,石油企业针对汽柴油的能源处理工作力度也在逐步提高,主要体现在装置设备的节能改善,汽柴油加氢装置是节能改造工作的开展重点,是企业成本降低与控制的有效方式。基于此,本文针对当前在汽柴油加氢精制装置中开展的节能工作展开分析,促进工作的更好发展。

  • 标签: 汽柴油 加氢装置 节能改造 效果
  • 简介:摘要:可以说,在我们目前的市场上,对清洁燃料的需求越来越大。生产更清洁的燃料变得越来越严格 ,并应用在制造过程中 ,加氢裂化不仅可以适应各种生产含硫量低的特有的油和含硫量极低 ,而且还有助于提高产量的炼油厂。然而,在石油产品生产中加入加氢裂化装置也增加了能源消耗,从而增加了整个生产的成本。对加氢裂化装置的节能措施进行了分析,以供参考。

  • 标签: 加氢 裂化装置 节能措施 研究分析
  • 简介:摘要:石油炼制中加氢技术为重要的应用技术,加氢技术的有效应用,对于石油炼制质量的提升,以及企业实际收益的提升发挥了重要的作用。但现在石油加氢技术的应用过程中还存在一些问题亟待解决,因此,文章针对当前石油炼制中的加氢技术问题,进行简要的分析研究。

  • 标签: 石油炼制 加氢技术 问题
  • 简介:摘要:石油资源是一种优质的不可再生的能源,由于在过去的几十年里加大了开采石油资源的力度,目前许多油田面临枯竭,正在进行许多油田的二次开发,因此,目前石油市场中重视石油及低质量石油所占的比率逐年上升,在这种低质量石油中,更多的硫、碳元素的含量比过去高。氢气加氢技术是石油提炼过程中减少污染气体排放的重要技术手段,在实际炼油过程中,围绕有关催化剂的应用进行合理的分析,正式解决氢气加氢技术精油中出现的各种问题,对我国石油化工企业的发展提供了帮助。

  • 标签: 石油炼制 加氢技术 催化剂
  • 简介:摘要:目前,随着石油时代的到来,原油深度加工和清洁燃料生产技术得到快速发展, FCC技术的发展方向是在提高重油转化能力的同时,降低产品硫、氮、烯烃等含量并提高目的产物收率,从而创造更高的效益,而 FCC原料进行深度加氢处理是实现上述目的的有效手段之一,这已越来越为炼油业界所接受和认可。

  • 标签: 蜡油加氢装置 循环水消耗 措施研究
  • 简介:摘要:伴随着时代的高速发展与人们对生态环境需求不断增加,各个行业都进步环保理念的步伐中。在当下汽油生产加工过程中也应该重视对脱硫工艺技术的重视,不断研究和更新脱硫工艺技术,尽可能降低汽油中的含硫量,使汽油在燃烧过程中所产生的污染降至最低本文首先介绍了汽油加氢工艺技术的定义、基本特征,其次对汽油加氢工艺技术的技术流程与原理进行了解析,最后探讨了汽油加氢工艺技术的工艺技术条件与影响参数,希望可以为进一步提升汽油加氢工艺技术水平,满足国家标准与工艺要求创造条件。

  • 标签: 汽油加氢工艺技术 技术流程 影响条件
  • 简介:  【摘 要】随着人们对生存环境的日益重视,环境保护法的日益严格,对车用燃料的质量提出了更高的要求,生产低硫、低芳烃、低密度、高十六烷值的清洁汽油是今后世界范围内的汽油生产的总趋势,为适应未来清洁汽油生产需求,国内外科研机构及企业,创新并开发出一些先进技术以满足生产清洁汽油的需求。汽车尾气造成的大气污染问题已引起人们的密切关注,降低汽油硫含量是改善空气质量的有效手段,采用有效的技术手段降低催化裂化( FCC )汽油硫含量已成为当务之急。    【关键词】催化;裂化;汽油;脱硫技术;应用    世界范围内经济的快速发展,车用汽油的消耗量与日俱增,由于人们对环保要求的不断提高,汽车尾气造成的大气污染问题已引起人们的密切关注。汽车尾气排放达标的关键在于提高车用燃料油的质量,因此欧美相继颁布了汽车尾气排放标准,限制汽车尾气中 CO 、 SOx 、 NOX 颗粒物和炭烟等有害污染物的含量。我国也已从 2010 年 1 月 1 日起在全国范围内启动“国Ⅲ”标准,硫含量要求降至 150μg/g 以下。据调查,我国成品汽油中 90% 以上的硫来自于催化裂化( FCC )汽油馏分,而西方国家成品汽油中 FCC 汽油的比例低于 30% 。随着石油加工原料的日益重质化和劣质化, FCC 汽油硫含量也将进一步升高。因此,迫切需要对 FCC 汽油馏分进行处理,深度脱除其中的硫化物,以得到符合清洁燃料标准的成品汽油,开发相应的催化裂化新技术、新工艺也成为研究者和使用者普遍关注的问题。    一、催化裂化汽油中的含硫化合物的分布    确定催化裂化汽油中含硫化合物的类型、含量以及分布情况是催化裂化汽油脱硫技术研究的出发点。国内外关于降低催化裂化汽油中含硫化合物的研究普遍认为,催化裂化汽油中的含硫化合物主要以噻吩和噻吩衍生物的形式存在,一般约占含硫化合物总量的 70% 以上,这类含硫化合物在催化裂化反应条件下比较稳定,很难裂化。因此,减少噻吩类含硫化合物是降低 FCC 汽油硫含量的关键。    二、催化裂化汽油脱硫技术的研究进展    加氢催化剂的预硫化按照载硫的方式可分为器内预硫化和器外预硫化。器内预硫化是在催化剂装入反应器之后再进行预硫化处理。器内预硫化又分两种方式:一种是在氢气存在下直接使用一定浓度的硫化氢或在循环气中注入二硫化碳或其它有机硫化物进行硫化,称为干法预硫化;另一种是在氢气存在下,用含硫化合物(二硫化碳、二甲基二硫等)的烃类或馏分油在液相或半液相状态下进行硫化,称为湿法预硫化。器外预硫化技术是将新鲜或再生的氧化态催化剂在装入加氢装置之前进行预硫化处理的工艺方法。采用特殊的工艺过程,将硫化剂提前引入催化剂孔道内,或以某种硫化物的形式与催化剂的活性金属组分相结合,将氧化态催化剂转变为器外预硫化催化剂,装填后无需引入硫化剂,以缩短开工时间。    (一)催化裂化原料加氢预处理    催化裂化原料加氢预处理可以从根本上解决汽油硫含量问题,同时可以提高催化裂化装置的轻质油收率,降低生焦率。但该方案需要新建高压装置并在高苛刻条件下操作,因此操作费用、投资费用高( FCC 原料加氢预处理所需投资为其他方法的 4 ~ 5 倍),且难以满足硫含量小于 30μg/g 的要求。因此尽管催化裂化原料加氢预处理是生产清洁燃料最有效的方案,但是若只采用对 FCC 原料进行脱硫的方法很难生产超低硫汽油,同时由于需要较高的设备投资目前仍少采用。    (二)催化裂化过程直接脱硫    催化裂化过程直接脱硫的方法是利用催化剂、助剂和工艺方面的新技术,从而在催化裂化反应过程中直接达到降硫的目的。由于该方法具有投资少、操作灵活、在炼油厂容易实现等优势,近年来受到了国内外业内人士的普遍重视。    (三)催化裂化汽油精制脱硫    催化裂化汽油精制脱硫的研究是目前最活跃的领域之一。由于常规的后加氢处理工艺即直接对 FCC 汽油进行加氢处理耗氢量高,辛烷值损失大,使得生产成本上升不能产生经济效益。因此此法曾经只是产品质量升级的补救措施。但是世界上许多公司都已针对催化裂化汽油开发出各具特色的脱硫工艺。这些工艺根据其采用的脱硫技术主要包括加氢脱硫、吸附脱硫、溶剂萃取脱硫、生物脱硫、氧化脱硫、膜分离脱硫等。    ( 1 )加氢脱硫。传统的 FCC 汽油加氢脱硫技术同时脱除汽油中硫化物以及汽油中的高辛烷值组分,造成汽油辛烷值损失。因此,目前具有较高脱硫活性、对汽油辛烷值影响较小的加氢脱硫技术主要包括选择性加氢脱硫和加氢脱硫辛烷值恢复技术。    ( 2 )吸附脱硫。吸附脱硫技术的优点是脱硫效果好、不降低汽油的辛烷值,同时操作条件温和、投资和操作费用低,环境污染少。目前吸附脱硫技术的工业化仍存在一定问题。其关键在于提高其脱硫的选择性、吸附容量并开发出经济的吸附剂再生方法。    ( 3 )溶剂萃取脱硫。溶剂萃取脱硫技术在常温常压下操作、溶剂可循环使用且不改变油品的化学成分,因此该工艺简单,能耗低。由于一般物理萃取的效率都比较低,难以达到深度脱硫的目的,因此溶剂萃取脱硫技术成功应用的关键在于高效萃取剂的选择。    ( 4 )生物脱硫。生物脱硫技术是一种可脱除汽油中的有机硫化物的新型环保脱硫技术。该技术具有投资和操作费用低、能耗小、低温低压操作、不需要 H2 等优点,同时生物脱硫技术也是传统加氢脱硫后深度脱硫的有效途徑。    三、催化裂化汽油脱硫技术的发展对策    (一)优先发展催化裂化家族工艺。随着新配方汽油市场占有率的提高,我国炼油工业面临着严峻的挑战,大力发展既富产高辛烷值汽油 . 。在 MIO 工艺方面,齐鲁石油化工研究院也已取得了一定的成果。同时,加快对催化裂化汽油的合理利用研究,如 FCC 轻汽油醚化技术的开发以及结合催化蒸馏的醚化工艺,既降低了汽油的烯烃含量和蒸汽压,提高了辛烷值又可以增加汽油中的氧含量有利于生产高质量的车用汽油。    (二)提高重整开工率。为适应未来汽油的发展,应增加重整组分在汽油中的比例。重整汽油的辛烷值一般为 93 ~ 98 号,是汽油中重要的高辛烷值调和组分,但在我国车用汽油中含量较少。重整汽油具有大于 100℃ 馏分辛烷值高的特点,与催化裂化汽油调配可以弥补其后部分辛烷值偏低的不足,使调和汽油的辛烷值分布趋于合理。由于重整油的掺入,汽油中的烯烃、硫含量将大幅度降低。    (三)重视烷基化技术。烷基化油的辛烷值高并且是环境友好组分,应尽量增加它在汽油中的比例,对现有的烷基化装置需进行改造和扩建,使其发挥更大的作用。近年来烷基化工艺向固体酸烷基化和添加表面活性剂方向发展。目前国内的多家科研单位和大专院校都在努力攻克这个课题,已经取得了较大进展。    (四)推广添加清洁剂。汽油清洁剂能有效地抑制发动机供油系统沉积物的生成,以净化发动机,改善喷油嘴和进气阀等处积炭和沉积物,这样可以保持清洁状态,节省燃油,改善排放。总之,目前除了结合国情制定合适的汽油标准外,应尽快使我国汽油结构调整到接近国际水平。大力改进现有的工艺技术,开发有前景的新技术,生产高质量的车用汽油,准备应对我国进入 WTO 以后即将到来的严峻竞争和挑战。    四、结语    近年来,我国加工进口原油的比例逐年增加,其中中东高钒、高硫原油将成为我国主要进口的原油。而由于 FCC 汽油中的硫化物占成品汽油中硫化物总量的 85% 以上,因此在原料变差变重而环保法规要求越来越高的情况之下,降低 FCC 汽油硫含量已成为当务之急 . 发展 FCC 汽油深度脱硫的节能技术、高效技术、绿色技术,对我们的社会和环境都有着十分重要的意义。    【参考文献】     [1] 山红红,李春义,赵博艺等 .FCC 汽油中硫分布和催化脱硫研究 [J]. 石油大学学报(自然科学版), 2001 , 25 ( 6 ): 78-80.     [2] 王宏伟,贺振富,田辉平等 .FCC 汽油非临氢脱硫技术进展 [J]. 化工进展, 2005 , 24 ( 11 ): 1216-1224. 

  • 标签: