学科分类
/ 2
23 个结果
  • 简介:选择典型亚热带稻-麦轮作农田,比较不同施加量的玉米芯生物质炭对作物产量、土壤理化性质和CO2排放的影响,并结合同位素分析研究了生物质炭的分解程度及其在水作影响下的田间存留量。结果显示,施加生物质炭显著增加了土壤阳离子交换量和总有机碳含量,降低了土壤CO2排放速率。δ^13C数据表明,生物质炭在施加初期被快速分解,对土壤CO2排放的短期贡献率可达35.95%,但一个生长季后分解微弱;生物质炭在水田中流失明显,一个轮作周期后的田间存留率为17.33%-36.50%。结果表明,生物质炭可提升亚热带水一旱轮作农田土壤碳库并降低土壤CO2排放速率。

  • 标签: 生物质炭 Δ^13C 土壤碳库 土壤CO2排放 水旱轮作 农田生态系统
  • 简介:两种气体,氮气和氧气,以压倒优势的状态主导着地球的大气圈。氮气是原生的,而且其存在和丰度不是生物过程所驱动的;相反,氧气是生物通过水的氧化作用而连续产生的,这个氧化作用得到了太阳光的能量驱动。氧气,一种对动物生命进化最为关键的气体,是如何变成大气圈中丰度第2的气体?问题并非以前所设想的那么简单;为了了解大气圈氧化的时间进程,我们不但要知道氧气是什么时候而且是如何第1次出现的,而且还要知道氧气是如何在大气圈中保持一个高浓度的。可以肯定的2个事实是:地球最早期的大气圈是缺乏氧气的,而今天的大气圈则为21%的氧气所组成。需要特别强调的是,大多数古代大气圈氧气水平的地质标志,只是意味着存在与缺乏,而且发生在以下2个时间点的大多数事件是高度不肯定的;但是,一系列地质证据已经表明,大气圈氧气含量水平上升的时间进程发生在2个时间点上:(1)一个从缺氧的到含氧的大气圈的转变,大致发生在2.0-2.5Ga期间,这个转变就是著名的巨型氧化作用事件(GOE);(2)发生在前寒武纪—寒武纪过渡时期的大约540-850Ma的第2次巨型氧化作用事件(GOE-Ⅱ),被进一步命名为新元古代氧化作用事件(NOE)。GOE与NOE,就得出了地球大气圈氧气含量水平上升三段式的盛行图像。随着研究的深入,得到了以下重要认识:如果说大气圈氧气含量的总体增加,从太古宙微不足道的水平增加到今天21%,是由于氧气生产作用增强的结果而代表了一个复杂的地球生物学过程的话,那么,这个过程则发生在随着侵蚀作用与沉积作用相对于火山活动而变得更加重要的状况下,更进一步讲,叠加在这个总体趋势下的则是一系列的阶梯式的氧气含量水平上升,这与超大陆聚合作用之后异常高的沉积作用周期是相联系的,从而进一步说明了大气圈

  • 标签: 时间进程 氧气含量水平上升 大气圈 研究进展
  • 简介:对美国墨西哥湾海岸平原东部阿拉巴马,jql西南部小锡达河油田(LittleCedarCreek)微生物碳酸盐岩及相关储层开展了综合研究,这次研究为认识微生物储层的沉积特征、岩石物理性质和产能趋势的空间分布提供了极好的机会。本研究项目描述了微生物岩的沉积、岩石物理和油气产能特征,建立了三维储层地质模型,并评价了这类储层的油气潜力。下部储层由与微生物建造相关的凝块叠层石粘结灰岩构成,这些建造走向南西一北东,面积83km2在油田的西部、中部和北部,微生物建造成簇发育,而且厚度达到了13m。分隔这些建造簇的是建造间发育的微生物岩,其厚度2-3m,上覆有受微生物活动影响的不具储集能力的厚层灰泥岩(1imemudstone)和粒泥灰岩(wackestone)。微生物储层的孔隙类型包括沉积成因的原始堆积孔隙(constructedvoid)(骨架内[intraframe])和成岩成因的溶蚀扩大洞穴孔隙(void)和孔洞孔隙(vuggypore)。这种孔隙系统使储集岩具有高渗透率和连通性,其渗透率可以高达7953md,孔隙度高达20%。微生物粘结灰岩极有可能构成油气流动单元。然而,这些建造被建造间发育的渗透率很低甚至不具渗透性的厚岩层分隔,而后者可能是流体流动的隔夹层。这个油田生产的1720万桶石油大都产自微生物岩相。小锡达河油田的研究成果可以为从微生物碳酸盐岩储层开采石油的其他类似油田开发方案的优化提供借鉴。

  • 标签: 碳酸盐岩储层 微生物岩 储层描述 油田生产 墨西哥湾 西南部