学科分类
/ 1
4 个结果
  • 简介:重力、温度、储层流体类型、地质构造、流体聚集过程等多种因素,都可能对油气藏中烃类流体的空间组分变化有重要影响。组分梯度(CG)在近临界油气藏中是一种值得重视的因素,它可以对原始油气地质储量的估算、油气界面(OGC)位置的预测以及油气藏的开发策略产生明显作用。有些油气藏产油气层段从顶到底的厚度可达数百米,有时甚至超过2000m。在这么大的厚度中,重力分异作用会使较轻烃组分的摩尔分数随深度的增大而变小,而较重组分的摩尔分数则会因深度增大而变大。对这些流体热力学特性的模拟,需要有一个能复制有效压力、体积和温度(PVT)数据以及重力组分分级的状态方程(EOS)。本文研究了哥伦比亚库西亚纳(Cusiana)气田的挥发油。由恒组分膨胀(CCE)和恒定容降(CVD)试验构成的PVT报告,可用于标定有关流体的模型和EOS的参数。为确定和描述有关的拟组分,使用了具有容积转换和whitson方法的彭·罗宾森(PengRobinson)EOS。研究结果探讨了不考虑组分梯度时所出现的原始烃类容积的差异。即:不考虑组分梯度,原始油、气地质储量可以因取样深度的不同而被高估或低估。还表明,可以选定一个对应于特定深度的基准样品组分,以便在没有组分梯度时使用。由此估算的原始油气地质储量能相当于由组分梯度所得出的储量。在为挥发油藏和凝析气藏确定地质储量时,本文提供了如何评价等温重力组分梯度影响的指导原则和具体步骤。

  • 标签: 近临界油气藏 石油储量 重力组分梯度 状态方程 流体模型
  • 简介:苏里格气田石盒子组盒8段是气田的主力产层,其地层水矿化度一般在20g/L~50g/L,水型为CaCl2型。通过66121井的试气资料及地层水化验数据的分析,盒8段气层或水层除了呈相互独立的分布外,同一层段的砂体中还具有气层/水层、气水互层和气水同层三种分布类型。在平面上,气水分布关系复杂,地层水主要分布在苏里格庙西北的苏9井—鄂6井一带和乌审旗东北的盟4井—统18—统6井一带。通过苏里格地区盒8段构造、岩性以及储集物性等综合分析,认为盒8段气水分布主要受沉积微相、储层物性以及气体充注强度的控制。表2图5参11

  • 标签: 地层水 气水分布 苏里格气田 石盒子组 盒8段
  • 简介:电缆式地层压力测试一直是确定流体密度、砂层连通性、流体接触关系的主要测量方法。过去,对地层压力测试结果常常是半定量分析,所以对确定砂层连通性和评价流体接触关系的借鉴意义很有限。现在,由于开发了精度高、温度稳定的石英压力计,压力测量规程要求最好使用这种压力计测量,它有利于改善对系统误差的认识,能够运用精确的统计方法预测高渗透率岩石中的连通性、流体接触关系及其误差。Ugueto(2004)等已介绍了运用统计分析获得的系统成就,包括深度误差和压力测量值的准确性。然而,虽然该方法成功地预测了墨西哥湾(GOM)深水油气田储层的连通性和流体接触关系,但还存在不足,如所采用的对偶分析图(不包括压力梯度误差和深度误差)和统计分析的探索式特征。本文中,我们提出了运用统计方法分析储层连通性和流体接触关系的理论。这些方法综合考虑了压力计精度和准确性出现的误差、深度测量精确度、和在压力测量过程中的伪随机误差。该统计方法能用于压力梯度测量施工规划、以统计准则为依据的数据质量控制、单一流体类型储层连通性的定量计算、以及确定流体界面的深度与误差。本文简要概述了地层压力数据的应用,讨论了储层连通性和流体界面的模型,该模型是统计理论的基础。本文还介绍了GOM深水储层连通性例子,以及其与生产数据的对比方法。

  • 标签: 储层连通性 流体密度 压力梯度 统计分析 综合研究方法 应用
  • 简介:以得克萨斯州伊格尔福特组富含有机质页岩为例,介绍了预测诸如总有机碳含量(TOC)和破裂压力梯度(Fg)等非常规储层关键特征参数的一种方法。把以往所建立的岩石物性模型和岩石物理模型应用于现有的测井资料,生成了标定所需的参数曲线,即横波、TOC、有机质孔隙度和饱和度曲线。通过合成正演模拟评价了叠前地震数据,并进一步对其进行了预处理,以便改善AVO响应。通过联合叠前反演生成了波阻抗(AI)和切变阻抗(SI)数据体,通过对这些数据体进行线性内插计算了TOC。破裂梯度(也可以视为“可压性”)直接与泊松比和有效应力相关,可以由弹性性质来估算。破裂梯度与TOC具有非线性反比关系,即假设在空间分布范围有限的伊格尔福特组页岩区块内,孔隙压力分布具有横向和纵向均质性,则在TOC较高时,破裂压力梯度(FG)较低,因此可压性较好。

  • 标签: 破裂压力梯度 有机质丰度 得克萨斯州 非常规储层 页岩 福特