学科分类
/ 2
32 个结果
  • 简介:摘要:介绍了测定粉煤灰中游离氧化钙的常规实验室方法,分析了由此衍生的蔗糖法、微波法、设备快速测定法的优势,供参考。

  • 标签: 粉煤灰 游离氧化钙 实验室测量
  • 简介:摘要:铅酸蓄电池生产制造行业是现阶段我国在组织推进重金属污染防治工作过程中需要关注的重点行业,选择运用适当策略推进完成指向铅酸蓄电池生产制造行业领域的重金属污染治理工作,以及环境管理工作,对于提升我国生态环境建设事业的整体推进质量,以及可持续发展目标的具体实现过程,发挥着不容忽视的影响作用。文章将会围绕铅酸蓄电池行业重金属污染治理与环境管理,展开简要的阐释分析。

  • 标签: 铅酸蓄电池行业 重金属污染 治理 环境管理 探讨分析
  • 简介:摘要:厌氧氨氧化反应主要是在厌氧或缺氧条件下通过厌氧氨氧化氧化NH4+-N为氮气的过程,能够高效处理城市污水中的氨氮化合物,从根本上提升废水脱氮效率,已经成为新时期人们关注的焦点。尤其是在污水处理厂工艺设计时,借助厌氧氨氧化反应能够有效降低成本投入,使废水脱氮后的各项指标达到排放标准,具有较高的研究意义和应用价值。

  • 标签:
  • 简介:摘要:轧钢加热炉普遍存在氧化烧损等问题,可通过设备选型、技术优化等方式进行解决,进而提高加热炉的工作性能,使其在加热质量以及效率等方面的表现都更为良好,在维持正常生产的同时,减少废弃物排放。降低加热炉能耗可以从降低热损耗、引入先进技术、改良设备等方面努力,提高加热炉的加热质量和加热效率,降低能耗量和减少废弃物排放量是目前钢铁企业发展的主要目标,而这个过程较为系统,只有从设计、管理、操作等多层面着手,才能提高加热炉的节能效果,提升企业经济效益。

  • 标签: 轧钢加热炉 节能 氧化烧损 途径
  • 简介:摘要:蓄电池电解液溢出是城轨地铁车辆蓄电池故障的典型表现方式之一,本文针对城轨地铁车辆蓄电池电解液溢出原因进行深入刨析,寻找故障原因,进而找出相应的解决和预防措施。促进了城轨车辆整体制造水平的提升。

  • 标签: 城轨地铁车辆 蓄电池电解液 原因分析 预防措施
  • 简介:摘要:我国的国民经济发展速度不断加快,城市化进程随之增快。对于国民经济发展及水资源的保护工作来说,探究高质量、高效率的污水处理模式,属于维护水资源的持续利用以及绿色循环发展的关键保障。近些年来,厌氧氨氧化工艺已经被广泛的应用到了处理高氨氮废水中,获得良好的效果。本文进行分析厌氧氨氧化工艺应用到城市生活污水中的可行性、应用情况、影响因素等等内容。

  • 标签: 厌氧氨氧化 城市 生活污水 处理应用
  • 简介:摘要:随着现代工业的不断发展,产生了大量的生化降解性差、毒性高、浓度高的工业废水。工业废水问题已成为当今我国水污染控制领域的重点和难点。如何处理这些生物难降解的物质,作为高级氧化处理技术芬顿氧化法应运而生。本文先对高级氧化技术进行了概述,之后对高级氧化技术的具体应用和影响其效率的因素进行了讨论分析,以期作为参考。

  • 标签:
  • 简介:摘要:煤炭工业生产中的煤炭焦化是一项重要的技术手段,其能够生产出高附加值的化工产品,并且这项技术发展对于其它附属行业的发展起到了非常重要的推动作用。并且在煤化工产品生产过程中,除了要保证其质量之外,还要重视环境保护。但是实际生产中的二氧化碳排放在较大程度上制约了煤化工行业的可持续发展,所以有必要对煤化工工艺中的二氧化碳减排工艺进行分析。基于此,本文阐述了煤化工生产中的二氧化碳减排必要性及其来源,对煤化工工艺中的二氧化碳减排工艺进行了探讨分析,旨在提升煤化工生产效率。

  • 标签: 煤化工生产 二氧化碳 减排 来源 工艺
  • 简介:摘要:芬顿法(Fenton)是H2O2和Fe+混合得到的一种强氧化剂,具有很强的降解能力,能够将废水中的难生物降解的污染物进行有效清除,是一种高级氧化法,近十几年来在废水处理中的应用正得到越来越多的关注。本文先对芬顿法的成因进行分析,并以几种芬顿法施工技术为例,例如:常见的有普通芬顿法、光-芬顿法以及电-芬顿法等,详细探讨芬顿法在处理工业废水中的作用,意在提高整体的工业废水处理水平,为保护生态环境做出重要贡献。

  • 标签: 芬顿氧化法 高浓度有机农药 污水处理 作用与方法
  • 简介:摘要:为了更好地推进可持续发展战略,构建更加完善的污水处理体系是非常有必要的。现如今,氧化沟工艺已经成为国内外各大污水处理厂的主流污水处理方式,但由于各种因素的限制和影响,在污水脱氮除磷工作方面依旧存在以及大的提升改造空间。本文结合污水处理厂实际情况,就氧化沟工艺脱氮除磷提升改造进行详细探究,旨在提升我国污水处理厂的工作效率,推进我国环保事业的持续发展。

  • 标签: 污水处理厂 氧化沟工艺 脱氧除磷 改造探究
  • 简介:摘要:近年来,随着工业的快速发展和过量化石燃料燃烧,使大气中的二氧化碳浓度逐年增加,导致了许多环境问题,包括温室效应、海洋酸化等,如何将CO2资源化利用引起了科研工作者的广泛关注。CO2可作为碳源与可再生能源如太阳能、风能、生物质能等制得的氢气进行反应,生成高附加值的化学品,例如一氧化碳,甲醇,碳氢化合物,环状碳酸酯,恶唑烷酮等。用于CO2化学转化的催化剂包括沸石,无机盐,有机配合物,离子液体和有机物框架材料等。金属有机骨架材料(MOFs)由于其大的比表面积和孔体积、独特的孔道结构以及表面的酸碱性能,可用于气体吸附、分离、传感、催化等方面。MOFs作为一种温和高效的催化剂,在二氧化碳的化学转化中取得了较好结果。

  • 标签: 金属有机骨架材料 二氧化碳加氢 催化 研究进展