特高压直流输电的现状与展望李美云

(整期优先)网络出版时间:2017-12-22
/ 2

特高压直流输电的现状与展望李美云

李美云王佳男董明苏震

(辽宁省送变电工程公司辽宁沈阳110021)

摘要:特高压直流输电目前适用于海底长距离电缆输电、长距离大容量架空输电以及电网互联等场合,还用于大型发电电源基地输送电力至远距离负荷中心。本文对特高压直流输电的技术现状与发展前景进行了分析。

关键词:特高压;直流输电

1特高压直流输电优点

我国目前发展的特高压输电技术包括特高压交流输电技术和特高压直流输电技术。一般特高压交流输电技术用于近距离的组网和电力输送,直流输电技术用来进行远距离、大规模的电力输送,两者在以后的电网发展中都扮演重要角色。本文对其中的特高压直流输电技术进行简要分析,其优点主要包括以下几个方面。

在直流输电的每极导线的绝缘水平和截面积与交流输电线路的每相导线相同的情况下,输电容量相同时直流输电所需的线路走廊只需交流输电所需线路走廊的2/3,在土地资源越来越紧张的今天,特高压直流输电线路可以节省线路走廊的优点显得更加突出。

在输送功率相同的情况下,直流输电的线路损耗只有交流输电的2/3,长久以往可以节约大量的能源;同时直流输电可以以大地为回路,只需要一根导线,而交流输电需要3根导线,在输电线路建设方面特高压直流输电电缆的投资要低很多。

交流输电网络互联时需要考虑两个电网之间的周期和相位,而直流输电不存在系统稳定性问题,相比交流输电网络,能简单有效地解决电网之间的联结问题。

长距离输电时,采用直流输电比交流输电更容易实现,如800kv的特高压直流输电距离最远可达2500km。

直流换流站使用块式结构进行高压整流,电压逐级增加,容易提升电压等级。

2我国特高压直流输电的现状

从上世纪70年代开始,前苏联、美国、加拿大、巴西和南非等国家考虑到特高电压等级、超远距离输电、特大输电容量的需求,在研究特高压交流输电技术的同时,也开始进行特高压直流输电技术的研究工作。经过美国EPRI、加拿大IREQ、巴西CEPEL等科研机构的研究工作,特高压直流输电中的一些重要技术已经取得了关键进展。例如,经研究发现,在1400-3000km的远距离、大容量电力输送中,从电网建设的经济型和环境影响的角度进行考虑,高于±600kV电压等级的特高压直流输电是值得优先选择的高压输电方式,而且±800kV电压等级的特高压直流输电系统在设计、建设和投运在技术方面而言是完全可行的等等。特别值得我们一提的是,前苏联曾经设计并初步建设从唐波夫到埃巴基斯图兹到±750kV电压等级、输送距离2400km、输送功率容量为6000MW的直流输电工程。该项目中,所有的设备均已通过了初步试验,而且已建成长度高达1090km的线路,但是最后却因政治、经济等方面的因素停止了建设。尽管这样,该项目仍然可以在一定程度上为我国目前设计的特高压直流输电网络起到参考价值。

我国地域广阔,同时能源资源与电力消耗的不平衡使得我国尤其适合发展特高压直流输电技术。一直以来,我国发展的主要是500kv的输电技术。随着经济的发展,原有的输电系统已经不能满足东部地区日益增长的电力消耗,为此需要发展特高压直流输电技术,实现能源资源的合理分配。1987年,舟山直流输电工程正式投入使用,这是我国独立建成的第一个直流输电项目,弥补了我国在直流输电技术方面的空缺。进入21实际以来,我国陆续建成了众多高压直流输电技术,并不断研究直流输电技术的相关特性。2005年2月,百万伏级交流输电以及±800kV级直流输电工程的前期研究工作在全国范围内启动。目前我国已经建成一系列800kV特高压直流输电工程并投入使用,其中代表性的特高压直流输电工程建设于苏南-锦屏两地,其输电距离为210万米、额定容量为7200兆瓦,并且在2012年成功投入使用。2012年6月29日,我国的±1100kV特高压换流变压器通过了型式试验,这是由国家电网主导研发的。这这次试验中,变压器的各项指标优良,在技术方面完全符合建设特高压直流输电工程的技术规范,是在我国以致国际上研发±1100kV电压级别直流输电技术过程中的突破,具有非常重要的意义。目前,我国特高压输电工程在输电线路长度、输送电力、输电设备制造和管理等方面已经处于国际领先水平。

3特高压直流输电面临的问题

3.1过电压及绝缘问题

目前,我国已投入运行的特高压直流工程电压由为±800kV,输送容量较大,约为±500kV输电容量的2倍,随着换流站和线路绝缘部分的投资比例逐渐增大,一旦线路发生绝缘故障,带来的系统扰动问题和损失将很严重,因此过电压保护以及绝缘配合问题将是特高压直流输电亟需解决的问题。另外,我国西部水电资源由于地处海拔较高,存在很严重的污秽、履冰等问题,系统要想稳定运行,需要高质量及合理优化的过电压保护和绝缘配合。

3.2电磁环境问题

高压直流输电线路运行时在导线周围空间附近会产生离子流场,导线下合成的场强对人体产生有害影响。线路或换流站设备产生的无线电会对无线电通信工程正常接收产生干扰,干扰产生的过高噪声会使附近居民产生烦躁不安的感觉。

3.3控制保护问题

控制保护问题是高压直流输电的核心问题。其关键技术有:软硬件平台控制技术、阀触发控制、直流保护设计、直流控制保护系统设计。直流输电系统故障很大程度是控制保护系统故障造成的。由于特高压直流输送电能过大,对直流保护系统的相关要求也更严格。因此需深入开展控制算法与鲁棒、智能控制等多种先进算法相结合的研究工作,避免多回直流落点相对集中时发生换相失败的现象,充分利用直流附加控制作用,灵活快速的提升系统稳定性。

4我国特高压直流技术未来的发展方向

我国特高压直流输电工程在最近十年得到快速发展,已经建成哈郑特高压直流工程、锦苏特高压直流工程、向上特高压直流工程等一批特高压直流项目,上山特高压直流项目等正在建设之中。中国已成为世界上投运直流输电工程最多、直流输电技术应用最全面的国家。

未来随着社会的发展,我国的特高压电网建设还会继续向着更高的电压等级发展,以达到距离更远、容量更大、损耗更小的目的。

换流变压器是直流系统最主要的设备,占设备价格的40%,所以发展更高电压等级的直流输电工程,必须要有可靠的换流变压器。换流变压器绝缘结构复杂,需要同时耐受交直流和急性反转电压;调压级数多,出线结构复杂;尺寸大重量大,运输不变。且考虑到国内大部分变压器的运输方式为公路+铁路运输,在运输界限下的的主绝缘距离如何确定、主绝缘结构如何布置以及阀侧出线的研发又是重中之重。

此外,我国大气污染的日益严重,工业生产排出的含盐废气,包括钠、钾、钙等,污秽环境下外绝缘子的配置是我国特高压技术的研究重点。

结语:

综上所述,从目前情况来看,在实现大区电网联网时,采用特高压直流输电方式更具优势。特高压直流线路除了要考虑特高压交流线路存在的电场、无线电干扰、磁场、线路可听噪声等对环境和人的影响外,还要进一步考虑换流站噪声、离子流效应等因素对外界的影响以及换流站接地极对交流系统造成的影响。

参考文献:

[1]杨万,印永华,曾南超.锦苏特高压直流输电工程系统试验研究和实践[J].电网技术,2014,38(01):16-21.

[2]刘振亚,张启平,董存,张琳,王智冬.通过特高压直流实现大型能源基地风、光、火电力大规模高效率安全外送研究[J].中国电机工程学报,2014,34(16):2513-2522.