汽轮机故障诊断技术的发展及前景

(整期优先)网络出版时间:2012-03-13
/ 2

汽轮机故障诊断技术的发展及前景

郭传旭

郭传旭伊春市林都热电厂153000

摘要由于设备结构的复杂性和运行环境的特殊性,汽轮发电机组的故障率不低,而且故障危害性也很大。因此,汽轮发电机组的故障诊断一直是故障诊断技术应用的一个重要方面。本文论述了汽轮机故障诊断技术的发展,提出了今后在这一领域的研究方向。

关键词汽轮机故障诊断前景

信息技术和计算机技术的迅速发展以及各种先进数学算法的出现,为汽轮机故障诊断技术的发展提供了有利的条件。人工智能、计算机网络技术和传感技术等已经成为汽轮机故障诊断系统不可缺少的部分。

1.汽轮机故障诊断技术的发展

1.1信号采集与信号分析

1.1.1传感器技术

由于汽轮机工作环境恶劣,所以在汽轮机故障诊断系统中,对传感器性能要求就更高。目前对传感器的研究,主要是提高传感器性能和可靠性、开发新型传感器,另外也有相当一部分力量在研究如何诊断传感器故障以减少误诊率和漏诊率,并且利用信息融合进行诊断。

1.1.2信号分析与处理

最有代表性的是振动信号的分析处理。目前,汽轮机故障诊断系统中的振动信号处理大多采用快速傅立叶变换(FFT),FFT的思想在于将一般时域信号表示为具有不同频率的谐波函数的线性叠加,它认为信号是平稳的,所以分析出的频率具有统计不变性。FFT对很多平稳信号的情况具有适用性,因而得到了广泛的应用。但是,实际中的很多信号是非线性、非平稳的,所以为了提高分辨精度,新的信号分析与处理方法成为许多机构的研究课题。

1.2故障机理与诊断策略

1.2.1故障机理

故障机理是故障的内在本质和产生原因。故障机理的研究,是故障诊断中的一个非常基础而又必不可少的工作。目前对汽轮机故障机理的研究主要从故障规律、故障征兆和故障模型等方面进行。

由于大部分轴系故障都在振动信号上反映出来,因此,对轴系故障的研究总是以振动信号的分析为主。

调节系统的可靠与否,对汽轮机组的安全运行具有非常重要的意义。

1.2.2诊断策略和诊断方法

在汽轮机故障诊断中用到的诊断策略主要有对比诊断、逻辑诊断、统计诊断、模式识别、模糊诊断、人工神经网络和专家系统等。而目前研究比较多的是后面几种,其中人工神经网络和专家系统的应用研究是这一领域的研究热点。

基于小波分析方法和神经网络建立的智能分析技术,是下一代故障检测与判定(FDI)的重要内核。国内外在这方面进行了很多的研究,目前应用最多的是前向神经网络、BP神经网络以及把神经网络与模糊诊断相结合的模糊神经网络等。

诊断策略的研究还有:模糊诊断用于振动故障诊断、用于层次模型、用于模式识别、用于转子碰磨诊断、用于通流部分热参数诊断的研究;模糊关联度用于多参数诊断;灰色理论用于故障诊断;概率分布干涉模型用于诊断;相关维数用于低频噪声诊断等的研究。

诊断方法上的研究一直是故障诊断的一个重点。振动法是应用最普遍也比较成熟的一种方法,Ingleby,M把自动分类法和模式分析用于振动诊断,何正嘉应用Winger时频分布和主分量自回归谱分析轴瓦的振动信号,施维新针对一般诊断都是从征兆判断原因的逆向推理提出了振动诊断的正向诊断法。在汽轮机故障诊断中,应用热力学分析诊断汽轮机性能故障也是一个重要手段,另外还有油分析、声发射法、无损检测技术等。声发射法主要用于动静碰磨故障检测、泄漏检测等。在汽轮机寿命诊断中,无损检测技术应用相当重要,目前用到的非破坏性评价法主要包括硬度测定法、电气抵抗法、超声波法、组织对比法、结晶粒变形法、显微镜观察测定法、X射线分析法等。

1.3国内在故障诊断系统设计和系统实现方面的研究

完整的汽轮机故障诊断系统,应包括数据采集、信号处理与分析、诊断和决策几个部分,它是故障诊断技术的集中体现,我国早在80年代就开始了这方面的研究,到目前已经研制开发出了几十种系统。

华北电力学院以模拟转子试验台作为信号源对汽轮发电机组振动监测与故障诊断系统进行了研究。上海汽轮机厂研究所经过多年的实验和研究,推出了四套旋转机械状态监测和故障诊断系统,他们在系统硬件配置上做了较多的工作。上海交通大学研制了一种热力参数监测和故障诊断系统TPD,该系统可以提高运行可靠性、优化运行方案、提高运行效率、延长运行寿命。东南大学对集成智能故障诊断系统和远程分布式故障诊断网络系统进行了研究。华中理工大学研究了诊断系统的功能及其实现、数据的采集以及远程诊断等问题,并开发出了多套汽轮机故障诊断系统,其中汽轮发电机组在线振动监测与故障诊断专家系统(HZ-1)采用了主从机结构,可以对多台发电机组实时监测及集中诊断;200MW单元机组状态监测、能损分析及汽轮发电机组故障诊断专家系统采用Solartron分散采集系统监测机组,集DAS系统、状态监测、能损分析和故障诊断于一体等。由清华大学、华中理工大学、哈尔滨工业大学、哈尔滨电工仪表所等院所联合研制200MW、300MW汽轮发电机组工况监测与故障诊断专家系统(国家"八五"攻关项目)可全面监测诊断机械振动故障、汽隙振动故障、热因素引起的故障、机电耦合轴系扭振故障、以及调节控制系统故障。哈尔滨工业大学对诊断系统从数据采集到原型机理论作了很多研究,并推出了代表性的诊断系统MMMD。

2.汽轮机故障诊断的发展前景

很多学者和研究人员都认识到上述问题对汽轮机故障诊断技术发展的影响,正在进行相应的研究工作。本文认为汽轮机故障诊断技术的研究将会在以下几个方面得到重视,并取得进展。

2.1全方位的检测技术

针对汽轮机及其系统各类故障的各种新检测技术将是一个主要的研究方向,会出现许多重要成果。

2.2故障机理的深入研究

任何时候,故障机理的深入研究都将推动故障诊断技术的发展。故障机理的研究将集中在对渐发故障定量表征的研究上,研究判断整个系统故障状态的指标体系及其判断阈值将是另一个重要方向。

2.3知识表达、获取和系统自学习

知识的表达、获取和学习一直是诊断系统研究的热点,但并未取得重大突破,它仍将是继续研究的热点。

2.4综合诊断

汽轮机故障诊断,将从以振动诊断为主向考虑热影响诊断、性能诊断、逻辑顺序诊断、油液诊断、温度诊断等的综合诊断发展,更符合汽轮机的特点和实际。

2.5诊断与仿真技术的结合

诊断与仿真技术的结合将主要表现在,通过故障仿真辨识汽轮机故障、通过系统仿真为诊断专家系统提供知识规则和学习样本、通过逻辑仿真对系统中部件故障进行诊断。

2.6信息融合

汽轮机信息融合诊断将重点在征兆级和决策级展开研究,目的是要通过不同的信息源准确描述汽轮机的真实状态和整体状态。

2.7从诊断向汽轮机设备现代化管理发展

研究的重点将集中在基于诊断技术的预知维修决策、维修管理、设备计算机化管理系统等方面,目的是针对汽轮机及其系统实施预知维修或基于状态的维修,获取最大的经济收益。这也将是推动电厂接受该汽轮机诊断系统的一个根本所在。