浅探高中数学解题技巧中的转化化归思想杨玉波

(整期优先)网络出版时间:2012-12-22
/ 1

浅探高中数学解题技巧中的转化化归思想杨玉波

杨玉波

四川省剑阁中学杨玉波

【引言】

转化与化归思想就是把待解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法将实际问题数学化、陌生问题熟悉化、抽象问题具体化、将较难问题化为较易问题,将未解决问题化归为已解决问题,最后归结到某个或某些已经解决或比较容易解决的问题上来解决原问题的数学思想。从某种意义上说,数学题的求解都是应用已知条件对问题进行一连串恰当转化,进而达到解题目的的一个探索过程。

1.转化有等价转化与非等价转化。等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能带来思维的闪光点,找到解决问题的突破口。

2.获得原问题的解决。

3.化归与转化应遵循的基本原则:

(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决(2)简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据(3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决(5)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。

4.高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化

相关题型1:集合问题对于许多集合问题,通过转化,将不熟悉和难解的集合问题转化为熟知的易解的问题,将抽象的问题转化为具体的直观的问题,便于将问题解决。

相关题型2:函数问题通常函数的最值要转化为导数处理,要理解不等式恒成立与函数的最值的等价变换关系,提高自己综合运用知识解决新情境、新问题的能力。

相关题型3:不等式问题构造函数解题是数学中的常用方法,通过巧妙地构造辅助函数,把原来的问题转化为研究辅助函数的性质,从而达到解题目的。

相关题型4:三角问题体现在三角函数中是切割化弦、统一角、统一函数名称、换元等手段处理求值(域)、最值、比较大小等问题。

相关题型5:数列问题数列是一种特殊的函数,动态的函数观点是解决数列问题的有效方法。数列的项可看作定义在正整数集(或它的有限子集)上的函数。

如等差数列的通项公式,前n项的和公式。当时,可以看作自变量n的一次和二次函数。因此利用函数的思想方法去研究数列问题不仅能加深对数列的理解,也有助于学生解题思维能力的培养及增强应用函数思想解题的意识。

相关题型6:立体几何问题

【思维总结】

1.熟练、扎实地掌握基础知识、基本技能和基本方法是转化的基础;丰富的联想、机敏细微的观察、比较、类比是实现转化的桥梁;培养训练自己自觉的化归与转化意识需要对定理、公式、法则有本质上的深刻理解和对典型习题的总结和提炼,要积极主动有意识地去发现事物之间的本质联系。“抓基础,重转化”是学好中学数学的金钥匙。

2.为了实施有效的化归,既可以变更问题的条件,也可以变更问题的结论,既可以变换问题的内部结构,又可以变换问题的外部形式,既可以从代数的角度去认识问题,又可以从几何的角度去解决问题。注意紧盯化归目标,保证化归的有效性、规范性化归作为一种思想方法,应包括化归的对象、化归的目标、以及化归的方法、途径三个要素。因此,化归思想方法的实施应有明确的对象、设计好目标、选择好方法,而设计目标是问题的关键。设计化归目标时,总是以课本中那些基础知识、基本方法以及在应用上已形成固定的问题(通常称为规范性问题)为依据,而把要解决的问题化归为成规律问题(即问题的规范化)。化归能不能如期完成,与化归方法的选择有关,同时还要考虑到化归目标的设计与化归方法的可行性、有效性。因此,在解题过程中,必须始终紧紧盯住化归的目标,即应该始终考虑这样的问题:怎样才能达到解原问题的目的。在这个大前提下实施的化归才是卓有成效的,盲目地选择化归的方向与方法必将走入死胡同。

4.注意化归的等价性,确保逻辑上的正确化归包括等价化归和非等价化归,等价化归后的新问题与原问题实质是一样的,不等价化归则部分地改变了原对象的实质,需对所得结论进行必要的修正。高中数学中的化归大多要求等价化归,等价化归要求转化过程中的前因后果既是充分的,又是必要的,以保证转化后的结果为原题的结果。如果在解题过程中没有注意化归的等价性,就会犯不合实际或偷换论题、偷换概念、以偏概全等错误。例如在解应用题时要注意原题中数量的实际意义,在经过数学变换后,应将所得的结果按实际意义检验;解方程或不等式时应注意变换的同解性是否仍然保持。

数学思想方法的学习是一个潜移默化的过程,没有一个统一的模式可以遵循,而是在多方领悟、反复应用的基础上形成的,化归也不例外。学生在解题过程中,必须根据问题本身提供的信息,利用动态的思维,多方式、多途径、有计划、有步骤地反复渗透,要善于反思解题过程,倒摄解题思维,回味解题中所使用的思想,去寻求有利于问题解决的化归途径和方法。