试析循环流化床锅炉超低排放技术刘世俊

(整期优先)网络出版时间:2017-12-22
/ 2

试析循环流化床锅炉超低排放技术刘世俊

刘世俊

(山西京玉发电有限责任公司山西省右玉县037200)

摘要:循环流化床(circulatingfluidizedbed,CFB)锅炉传统的炉内脱硫和低温分级燃烧等技术不能满足近零排放(即超净排放)的环保要求。为此,结合CFB锅炉污染物排放控制实践,提出了采用“炉内脱硫+尾部湿法”烟气脱硫技术、“选择性非催化还原+选择性催化还原”联合脱硝技术、湿式电除尘器技术的技术路线,来实现CFB锅炉近零排放,即达到现行燃煤发电机组排放水平。

关键词:循环流化床;锅炉;超低排放技术

一、循环流化床锅炉的燃烧特点

循环流化床锅炉是燃料范围适应性较大的低污染清洁燃烧技术。其具有燃烧温度低850~900℃、烟气中污染气体排放浓度低等优点,在当今日益严峻的能源枯竭和生态保护要求下,在我国得到了迅速的发展,目前我国循环流化床机组最大等级为600MW。

温度型氮氧化物是指燃烧过程中空气含的氮气,在高温下(1500℃以上)产生的氮氧化物,它随温度的升高而急剧生成。另外,氧气的浓度越高,氮氧化物的生成量就越高。综上所述,影响温度型氮氧化物的生成量,主要影响因素是温度、氧气浓度和停留时间。CFB炉的燃烧温度在850~900,所以基本上没有温度型氮氧化物的产生。

燃料型氮氧化物是指燃料中的N,在燃烧过程中氧化而生成的氮氧化物,而燃料型氮氧化物的生成量只占煤中N的产物的60%,其余大部分为N2和NH3,且燃料型氮氧化物的生成温度范围在600~800℃。由于燃烧中碳粒子的存在及NH3的生成,它们又是氮氧化物的良好的还原剂,特别是在850~950℃范围内。

要想降低氮氧化物的排放量,一是要控制低温燃烧(CFB炉的燃烧温度在850~900℃,正是脱硫的最理想的温度范围);二是要采用分级燃烧。所谓分级燃烧,就是让燃料在床层中空气(即一次风)稍微不足的条件下燃烧(称为一级燃烧),这时由于空气不足,一次风只能供部分燃料燃烧,产生大量碳粒和NH3与烟气混合,进而将氮氧化物还原成H2、N2,这时再在床层上方适当位置送入二次风,以保证氮氧化物的分解反应充分完成(称为二级燃烧)。CFB锅炉则很好地满足了这些要求,从而使烟气中的氮氧化物含量在40~150mg/m3(而同煤种的PC炉,则在300~450mg/m3)。

二、循环流化床锅炉低排放技术的应用

2.1CFB脱硫技术

煤中含有的硫成分,按照在空气中是否可以燃烧分为两种:第一种是可燃硫;第二种是不可燃硫。CFB锅炉中可燃的硫的产物是二氧化硫,这部分硫包括硫单质、有机硫等,占到煤中硫总含量的90%;第二种硫成分在空气中无法燃烧,可以在一定温度下以硫酸钙的形式稳定存在。下面介绍几种常见的脱硫工艺:①炉内干法脱硫技术。通过向CFB锅炉中加入碳酸钙来控制二氧化硫的排放量,该脱硫技术的步骤是首先碳酸钙在高温下分解为二氧化碳和氧化钙,氧化钙与二氧化硫反应生成固体硫酸钙,然后将生成的硫酸钙和炉渣、飞灰一块排出锅炉,最终达到了去除硫的目的。②CFB-FGB半干法脱硫。锅炉内煤燃烧后出来的烟气,流入循环流化床脱硫塔,经过喷水降温,使烟气的温度降低近15℃左右,然后加入水、各种吸收剂、脱硫灰等,经过一些化学反应,生成了固体硫化物,最终达到降低烟气中硫物质的含量的目的。③采用石灰石-石膏湿法进行脱硫。该脱硫工艺采用的是石灰石脱硫剂,可以向硫物吸收塔中喷入吸收浆液,使这些物质与烟气进行充分接触,达到对烟气过滤的作用,二氧化硫与强氧化空气及浆液发生反应,生成硫化钙水化物,可以有效吸收煤化物中硫成分。以上三种脱硫方法各有优缺点,具体的比较如表1所示。

通过对上述表格的分析可以得出采用第二种脱硫工艺,可以将脱硫的效率提升到90%以上,可以实现除尘和脱硫共同开展,与此同时为了满足二氧化硫和烟尘的排放限额,在容量高于300MW的火电机组普遍采用第二种脱硫技术。采用第三种脱硫工艺的脱硫效率最高,为95%以上,但是不足之处是采用这种技术可能会增加火电厂的建设成本,有关部门需要根据具体的情况去选择。实际中,有些地区要求CFB锅炉机组的综合脱硫效率高达98%,那么采用单一的脱硫方法就无法达到低排放的要求,因此,迫切需要寻找一种效率更高的方法,目前,可行的办法是采用锅炉内干燥的方法和烟气脱硫工艺的结合,以达到对煤中的硫含量深度脱去的目的,且调节的手段更加灵活、可靠,最终可以满足国家的相关规章规范。

2.2CFB脱硝技术

循环流化床锅炉在燃烧中会生成大量的氮氧化物,氮氧化物的量与燃料的温度及空气系数有关系。经过检测发现锅炉燃烧中产生的氮氧化物分为两种:第一种是燃料型;第二种是热力型。第二种物质的产生正比于锅炉的温度,即温度越高产生的氮氧化物越高。CFB锅炉内炉膛的温度要比煤粉炉的温度略低,因此产生的第二种氮氧化物较少。下面详细介绍第一种氮氧化物生成的主要步骤:第一步,燃烧过程中含有氮化物的固体物质受热以后,会逐渐分解为氨气或HCN,将随着鼓入的空气释放出来。第二步,生成的部分氨气或HCN在氧气的作用下转化为氮氧化物,氮氧化物的转化率和生成量取决于炉膛内的燃烧温度,当温度比较高时,氮将以一氧化氮或二氧化氮的形式释放出来,若此时炉膛内的温度较低,则氮化物将残留在灰渣中。基于这种原理,可以除去粉尘后的风机出口处的烟雾送入锅炉一次风机地点,吹入炉膛进行二次燃烧,送风管的规格为720×5,且在吹风机出口汇合处添加阀门,用以调节风量的大小,改造完成后可有效控制循环流化床锅炉内的温度,使其稳定在900°左右,按照发电厂使用煤的质量等级,可以计算出燃烧煤以后产生的氮氧化物浓度,排放的浓度低于200mg/m3。

2.3CFB粉尘检测升级改造

众所周知,烟气中含有的粉尘会对环境造成十分严重的危害,因此,对粉尘的监测仪器实行升级对测量粉尘含量有非常大的帮助。以前普遍采用的是国产LDM-100型激光粉尘仪,该仪器通过测定射入烟气中的光强和射出烟气的光强进行对比,达到对排烟管道、粉尘的浓度等实时测量的目的。这列粉尘的监测范围在0~100之间,然而,实际监测中受粉尘颗粒的影响比较大,导致监测的精度不是十分理想,且对于湿度比较大的烟气测量更加不准确,因此,采用该监测方法无法满足监测的要求。为了解决这类问题,2013年我国引入PM-1820WS型低粉检测仪,该仪器工作原理与激光粉尘完全不同,针对烟气中水分含量较多,导致结露问题的出现的情况,有很好的作用,通过拌热的探头将烟气进行抽取,干燥情况下对粉尘的浓度进行监测,可以有效避免水汽对结果的影响,能够比较精确地测量出饱和情况下的烟气粉尘的含量。采用该仪器设备后,测量粉尘的浓度更加精细,使得排放的烟雾粉尘量能够满足相关标准,对环境改善有较大的帮助。

结语

总之,采用CFB锅炉不仅在燃料方面有较强的适应能力,而且可以有效降低污染物的排放量,为此,在电力企业中被普遍采用,随着国家环保要求的不断提高,对CFB锅炉进行下一步改造显得十分重要,在CFB锅炉中引入脱硝和脱硫排放,并深入分析二氧化硫、三氧化硫、二氧化氮、一氧化氮等污染气体的生成条件,将为后续的污染物治理实现超低排放奠定坚实的基础。

参考文献

[1]石祥彬,等.循环流化床锅炉喷氨高效脱硝研究[J].中国电机工程学报,2011.

[2]梁建红.黄中循环流化床锅炉降低NO工排放浓度试验与优化改造研究[J].锅炉技术,2015.