研究建筑工程检测中无损检测技术的应用赵君超

(整期优先)网络出版时间:2019-10-05
/ 2

研究建筑工程检测中无损检测技术的应用赵君超

赵君超

山东广信工程试验检测集团有限公司山东省济南市250000

摘要:目前,我国的建筑行业发展十分迅速,无损检测技术在建筑工程中的应用,可以避免建筑结构或构件受到损害,保证建筑结构与构件的正常使用。本文首先对无损检测技术的应用优势及范围进行介绍,进而详细探讨建筑工程检测中常用的几种无损检测技术,以期为相关工程的应用提供参考。

关键词:建筑工程检测;无损检测技术;应用措施

引言

随着科学技术的发展,越来越多的新技术和新材料被应用到建筑工程当中,提高了建筑工程的施工质量。无损检测技术作为一种全新的建筑工程检测技术,不仅检测的准确度较高,符合建筑工程质量检测的要求,而且在检测中不会损伤建筑物的内部结构,备受建筑施工企业的青睐。研究分析无损检测技术在建筑工程检测中的应用具有重要现实意义。

1无损检测技术的具体特点

近几年,我国无损检测技术得到不断完善,并且已经处于国际领先行列,无损检测技术的应用范围越来越广泛,并且取得了不错的应用成绩。随着无损检测技术应用范围的不断扩大,要针对该项技术,制定相应的规章制度,通过制度对无损检测技的应用进行限制,从而使一些企业的行为能够受到相应的约束,避免不检测、糊弄情况的发生。无损检测实际上就是对技术手段进行应用,完成对建筑情况的检测,并且获取到相应的结果,同时,与相关的质量进行对比,对建筑质量是否达到了相应的要求标准进行判断。在建筑检测过程中对无损检测技术进行应用,不会对建筑造成破坏,优势十分明显。无损检测技术在具体应用过程中,对建筑的检测具有很强的随机性,因此,检测结果的精准度更高。同时,对于检测结果容易存储,采用相应的方式完成相应的计算工作,转变为工程量的具体指标,检测结果准确、可靠。

2实际工程中常用的几种无损检测技术分析

2.1超声波技术

无损检测技术已经在建筑工程中得到了较为广泛的应用,其中,超声波技术是建筑工程最常用的一种无损检测技术。在检测过程中需要使用的仪器设备包括超声波仪和超声波接收仪等。在检测过程中,超声波仪向待测目标发出超声波,与待测目标接触后,会产生反射波。超声波接收仪在捕捉到反射波形后,可根据其速度、路径等变化,判断待测目标表面平整度、强度等参数是否符合设计要求。整个检测过程较为简单,超声波接收仪会自动对反射波进行采集和记录,通过与计算机软件连接,自动完成反射波波形的分析工作,最后得出详细的检测结果,为检测技术人员提供参考。比如利用超声波无损检测技术检测建筑混凝土结构性能,超声脉冲能够以2万Hz以上的频率穿透混凝土,根据反射波判断混凝土结构是否存在裂缝等缺陷问题。但超声波检测技术的应用也存在一定局限性,如果待测对象为结构复杂、精细度较高的构件,接收到的反射波则会出现杂乱无章的现象,进而无法对其是否存在缺陷、缺陷详细信息进行判定。因此,超声波技术多应用于桩基等结构较为简单的构件检查。

2.2雷达波无损检测技术

作为微波检测技术的一种,雷达波当前在医疗、通讯等领域得到了广泛应用。在建筑工程检测过程中,利用雷达波技术的高穿透力特点,可以有效提高检测工作范围,实现对混凝土结构、钢筋位置判断的精准检测。通常情况下,工作人员只需向目标区域发射雷达波,通过分析雷达波的发射方向与速度变化,就可以准确掌握目标区域混凝土结构是否存在裂缝分层、脱粘等问题。

2.3渗透探伤检测技术

渗透探伤检测技术在运用时即是将带有颜色的液体或者具有亮光的材料,涂抹在需要被检测的产品表面,然后静置一段时间之后,在需要被检测产品的一些瑕疵部分,就会充满液体材料,通过这些液体材料,就可以更加清晰的观察出瑕疵部位的特征,检测人员在判断瑕疵部位的位置和大小时,可以通过判断对光源的照射情况来得出,对于探照光源的选择可以选择白光和紫外线两种方式。渗透探伤检测技术在应用时具有较多的优点,如检测效率较高、检测设备简便易带等。而且该种检测方式在具体使用时,即使没有电源的接通,也可以正常使用,在检测金属和非金属产品时,都可以使用这种方式来完成。然而,该技术在使用时还具有一个缺陷,即无法检测那些微小的瑕疵,最终导致很难确定这些小瑕疵的深度。因此,渗透探伤检测技术只能用来检测材料表面的瑕疵。为了避免渗透液的使用会影响到建筑材料的性能,需在检测完之后,及时将其清除,从而有效保障建筑材料的质量。

2.4冲击回波技术的应用

现代许多建筑工程的厚度都较大,在实际检测过程中,应用红外线技术和超生波技术完成相应的检测工作,检测结果都会存在一定偏差。检测过程中,利用冲击波技术,可以精准的测量建筑物的实际厚度,并且,可以检测建筑工程材料内部的缺陷。冲击回波实际上就是超声波和红外波两种技术的升级版,其目前已经在许多建筑工程检测中得到了应用,并且从实际应用情况来看,也许多不错的成绩。

2.5涡流检测技术

涡流检测技术在应用时是通过使用电磁感应的原理来进行的。电磁感应的发生形成了涡流现象,从而有效应用它来检测建筑内部的性能和内部结构等。为了确保在检测时可以更加及时准确的寻找到目标,需保证使用的线圈具有多种形式。涡流检测技术在实际应用时,检测速度更快、操作较简单所需成本较低,而且可以借助多种形式的线圈,来明确建筑的结构和特点。涡流检测技术主要被运用于建筑工程中的以下两方面:一是在检测建筑工程的内部结构,判断其是否存在缺陷时,可以在依据建筑工程材料产生电磁反应的情况下,来分析建筑工程的内部结构,判断施工材料的密度等来完成。二是可以通过探知线圈来检测出钢铁、金属制品等具有导电性能的物质,从而据此来有效检测和区分建筑材料在细微方面和深层方面的差别,从而提高对建筑材料质量评价的准确性能。

2.6红外线成像无损检测技术

该技术利用红外摄像机对建筑工程内部混凝土结构的电子辐射信号进行采集、分析和处理,掌握混凝土的温度变化趋势图,判断其是否存在温度异常情况,进而对混凝土结构的质量进行检测。

2.7射线探伤技术

射线探伤技术的应用原理与超声波技术较为相似,在检测过程中,都是根据反弹的能量波判断待测目标是否存在缺陷问题。射线探伤技术使用的射线主要为X射线和β射线,与超声波技术不同的是,射线探伤技术不是根据反射波形判断待测目标是否存在缺陷,而是根据射线反馈强度进行判断。在对建筑材料后构件进行检测时,如果射线检测到强度低于设计阈值的部分,在该部位会产生强弱信号,可以通过对信号进行观察,判断建筑材料或构件是否存在缺陷问题。射线探伤技术的特点是能够准确判断建筑材料、构件的内部是否存在缺陷,但对于缺陷类型、程度和位置等详细信息,往往无法确定,因此还需要与其他检测技术配合使用。

结语

在建筑工程检测领域,传统检测技术不仅检测精度低,而且很容易对建筑工程本身造成损伤,加剧了建筑物的质量问题。无损检测技术的应用,解决了传统检测技术的痛点问题,且操作简便,可满足大面积建筑工程质量检测,备受施工企业青睐。因此,相关工作者应重视无损检测技术研究,不断提升专业水平,在建筑工程检测中结合实际情况,选用超声波、雷达波、红外线成像以及渗透等无损检测技术,保障建筑工程的施工质量,从而推动我国建筑行业的可持续发展。

参考文献

[1]庞聪.试论金属材料焊接中超声无损检测技术的应用[J].世界有色金属,2017(11):258-259.

[2]郎顺潮.无损检测技术在建筑工程检测中的应用分析[J].江西建材,2017(22):295.