电厂热能动力锅炉燃料及燃烧分析马稳健

(整期优先)网络出版时间:2018-12-22
/ 2

电厂热能动力锅炉燃料及燃烧分析马稳健

王迎龙马稳健

(南海长海发电有限公司广东佛山528212)

摘要:目前,我国在电厂热能动力锅炉技术研究方面比较成熟,并成为了保证我国电力行业稳定发展的重要基础。虽然我国电厂热能动力锅炉应用现状整体效果比较好,但是在细节方面还存在一定的问题。为此,需要对目前电厂热能动力锅炉燃烧所存在的问题进行研究是十分必要的,这是成为提高我国电厂热能动力锅炉燃烧经济效益和社会效益的关键问题。所以,本文就针对电厂热能动力锅炉燃料及燃烧措施进行深入分析。

关键词:电厂;热能动力;锅炉;燃料;燃烧

这几年热能动力锅炉已经成为电厂广泛使用的发电技术之一,是我国电力行业发展的排头兵,所以为了进一步提高,我国电厂的发电效率和热能动力锅炉是使用效果,加强对热能动力锅炉燃料及燃烧情况进行深入的研究和分析有着重要的作用,通过研究热能动力锅炉的燃料和燃烧情况的研究是提高锅炉动力的有效途径。

1、热能动力装置和热能动力锅炉

热能动力装置就是将热能转化为机械能而产生原动力的成套热力设备。热能的来源包括利用煤、石油、天然气、油页岩、生物质能等燃料燃烧所放出的热能以及核能、太阳能、地热能等。热能动力装置包括汽轮机动力装置、内燃机动力装置、燃气轮机动力装置和核能动力装置等。它们主要是由原动机(汽轮机、内燃机、燃气轮机)及其辅助设备组成。火力发电就是利用热能动力装置所产生的原动力来驱动发电机生产电能。热能动力锅炉是一种能量转换设备,向锅炉输入的能量有燃料中的化学能、电能、高温烟气的热能等形式,而经过锅炉转换,向外输出具有一定热能的蒸汽、高温水或有机热载体。锅炉的主要工作原理是一种利用燃料燃烧后释放的热能或工业生产中的余热传递给容器内的水,使水达到所需要的温度或一定压力蒸汽的热力设备。锅炉在“锅”与“炉”两部分同时进行,水进入锅炉以后,在汽水系统中锅炉受热面将吸收的热量传递给水,使水加热成一定温度和压力的热水或生成蒸汽,被引出应用。在燃烧设备部分,燃料燃烧不断放出热量,燃烧产生的高温烟气通过热的传播,将热量传递给锅炉受热面,而本身温度逐渐降低,最后由烟囱排出。

2、电厂热能动力锅炉燃烧的方式及特点

2.1气体燃料燃烧类型

气体长焰燃烧也可被称之为扩散型燃烧,气体燃料在烧嘴中基本不与空气接触,在其进行喷射时通过扩散作用,与空气进行充分的结合,然后再进行燃烧,此时的燃烧火焰较长。气体燃料在烧嘴中与空气进行接触,此时空气的量较少,在喷射后完成局部燃烧,另外一部分燃料需要与空气充分接触并混合,再进行后续燃烧,此时的燃烧火焰较短。气体燃料在烧嘴中就已经与空气充分结合并混合,在喷出的同时快速燃烧,由于燃烧的速度过快,所以此时基本看不到火焰的存在。

2.2固体燃料燃烧类型

固体燃烧类型主要存在于挥发性质较差及不具备挥发结构的固体燃料中。通常在实际的运行过程中,燃烧结构的表面以二氧化碳及一氧化碳为主,如实际的燃烧条件允许,二氧化碳会通过实际的氧化作用被转化为燃烧的一氧化碳结构。其主要的燃烧条件主要是熔点相对较低的燃烧,在实际的燃烧过程中,由于未能为氧气充分的接触,这便降低了结构可燃性,继而产生固体的燃烧形态。该类型燃烧在实际的生活中较为常见,如在蜡烛的使用过程中,使用时间过长即可较为明显的发现固体燃烧的基本特点。固体燃烧主要针对容易被燃烧而分解的结构,所以在燃烧过程中,即可产生较为浓重的烟雾。在燃烧相对较为潮湿的报纸及木材时,该状况的发生较为明显,进而也可被视为结构燃烧的不充分而产生固体燃烧的情况。

3、电厂热能动力锅炉燃料燃烧过程

就电厂热能动力锅炉内部燃料燃烧过程来看,其燃烧作用的形成主要是由碳、氢、硫三种元素所实现的。在电厂热能动力锅炉燃料燃烧过程中,煤粉未充分燃烧,除了生成有害气体,比如一氧化硫等外,同时造成不完全燃烧热损失,导致电厂热能动力锅炉内部资源出现不同程度的浪费。而当电厂热能动力锅炉内燃料达到充分燃烧后,能够有效提高燃料利用率,促进电厂热能动力锅炉使用价值的充分发挥。为确保电厂热能动力锅炉内部燃料达到完全燃烧,可从三个阶段加以控制。

第一阶段是预热阶段,就是对燃料进行科学处理,待烘干挥发后,对其进行预热,以促进燃料燃烧。在这一阶段,燃料被充分加热,温度逐渐上升,燃料表面和缝隙中的水分就会被蒸发,使燃料表面变得干燥,而随着温度的进一步上升,燃料内部的水分也会慢慢消失。总而言之,这一部分燃料并没有放出热量,反而吸收了大部分热量,而燃料中的水分含量越多,热量吸收也就越多。一般情况下,电厂热能动力锅炉内的固体燃料可在300℃条件下实现充分燃烧,进而蒸发,并产生分解作用,一般燃料最佳预热温度不可低于300℃,不可超出400℃,如表2所示。因此在预热阶段,可令电厂热能动力锅炉内保持高温条件,令进入锅炉内的燃料达到预热效果,促进其自身水分蒸发,在预热作用下,燃料最终成为焦炭。在电厂热能动力锅炉内燃料燃烧的预热阶段,锅炉炉膛中无需引入氧气即可实现预热。在这一过程中要注意的是燃料水分的影响,当燃料水分越大时,排风量也进一步加大,同时也要注意温度的保持,过高或者过低的温度都会影响预热的质量,在锅炉燃烧中需要结合实际情况来对预热进行科学的调整。

第二阶段是燃烧阶段,这一阶段燃料继续被加热,温度继续升高,当达到一定程度时就会开始析出挥发分,进而形成热分解反应。当温度继续上升时,挥发分与氧的化学反应速度会加快,随后挥发分就会连续着火,在初期燃料表面覆盖的都是挥发分,阻滞了氧气与燃料的接触,燃烧的主体是燃料析出的物质,而随着挥发分的消耗,燃料最终得以与氧气进行接触,实现充分燃烧,物质得以充分发挥,待燃尽后,部分焦炭处于燃烧状态,此时即进入整个燃烧过程。为确保燃烧充分,这一阶段中必须引入氧气,满足燃烧需求,在燃烧阶段令氧气与燃料充分接触,达到强烈燃烧的状态,此时可充分释放热量,电厂热能动力锅炉的使用功能也得到充分发挥。为了保证整个燃烧阶段的质量,就需要合理控制氧气的投入以及整个锅炉的温度,如果空气过少则会导致燃料的不完全燃烧,造成损失,而空气过多则会影响整体的温度,同样也会影响整体的燃烧程度,降低了锅炉的热效率,同时也要给予充分的燃烧时间,确保其足够充分的燃烧。

第三阶段是燃尽阶段,当燃烧反应的持续进行时,燃料的体积会逐渐变小,而燃料原本没有参与燃烧的中心也会加入到燃烧反应中来,形成一个循序渐进的过程。随着燃烧的持续进行,燃料与氧气的反应最后会渐渐减弱,由于燃料的量已经消耗了许多,所以这一部分的燃烧就接近了尾声,这是电厂热能动力锅炉内部燃料燃烧的最后阶段,焦炭中可燃物质充分燃烧,电厂热能动力锅炉内部几乎无所剩余。通过对炭灰进行观察可以发现,其包裹内部仅存部分可燃性物质成分,在这一过程中燃烧的速度会越来越慢,其热辐射的效率也会受到影响。与燃烧阶段不同,往往这时的锅炉中已经形成了较大的温差,越接近燃烧的地方温度越高,而炉膛出口的温度则会与燃烧中心的温度有着较大的差距,这是一个温度场逐渐减弱的过程。虽然燃烧已经接近了尾声,但实际上,在燃尽阶段也离不开氧气的支持,以确保炭灰内部包裹的可燃性物质成分得以充分燃烧,满足生产生活的热能需求,从而避免资源出现浪费。

4、结束语

随着社会的发展,人口的增多,资源的减少,我们需要充分的利用现代科技提高资源的利用率,生产新能源。电力资源上也面临着电力资源供需的矛盾,为了解决这一矛盾,电厂热能动力锅炉燃烧技术应运而生。热能动力锅炉是一种能量转换设备,向锅炉输入的能量有燃料中的化学能、电能、高温烟气的热能等形式,而经过锅炉转换,向外输出具有一定热能的蒸汽、高温水或有机热载体。电厂热能动力锅炉燃烧技术的运用可以极大的提高锅炉的应用效率,提高电力能源利用率。

参考文献

[1]冯宝辉.关于电厂热能动力锅炉燃料及燃烧分析[J].工程技术:全文版,2016(12):00304-00304.

[2]田万喜.电厂热能动力锅炉燃料及燃烧分析探讨[J].工程技术:全文版:00274-00274.

[3]刘国文.关于电厂热能动力锅炉燃料及燃烧的探析[J].建筑工程技术与设计,2016(20).

[4]丁新国.电厂热能动力锅炉燃料及燃烧的探析[J].建筑工程技术与设计,2016(27).