浅谈市政桥梁的抗震结构设计

(整期优先)网络出版时间:2018-08-18
/ 2

浅谈市政桥梁的抗震结构设计

余辉

36042919920120xxxx516200

摘要:对于市政桥梁而言,其抗震性能的好坏势必会对人民生命财产造成重大影响。基于此,本文从市政桥梁抗震结构设计原则出发,分析了市政桥梁抗震设计的要点,最后提出了详细的市政桥梁抗震设计措施。

关键词:市政桥梁;抗震结构;设计

引言:市政桥梁结构设计应坚持安全、坚固原则,积极引进先进技术,如新结构、新型设备以及新材料与新的施工工艺,严格按照施工设计总则、荷载以及每种材料技术条件要求等各项施工设计部规范及其技术标准。

1、市政桥梁抗震结构设计原则

1.1安全性原则

在桥梁设计中应重视桥梁的安全性。以抗震设计为例,桥位应选择在对抗震有利的地段,尽可能避免选择在软弱粘性土层、可液化土层和地层严重不均匀的地段,特别是发震断层地段。如必须设置在可液化或松软土层的河岸地段时,桥长应适当增长,将桥台置于稳定的河岸上,而桥墩基础要加强。桥型要选择抗震性能好、整体性强的结构体系,如连续梁,无铰拱等。

1.2耐久性原则

随着城乡建设的不断发展,城市桥梁和公路桥梁的负荷越来越重,造成混凝土结构桥梁的不同程度的损坏;在设计和施工过程中不注重细部结构的设计也是造成桥梁耐久性的一个很重要的因素,这些问题的存在严重影响了桥梁的使用寿命,因而从多方面对混凝土结构的耐久性设计的分析和研究是非常必要的。

2、市政桥梁抗震结构设计要点

2.1主梁设计要点

在进行市政桥梁结构设计的过程中,首先需要做好主梁设计工作。主梁结构是整个市政桥梁结构的重中之重,因此,科学的进行主梁结构的设计是非常有必要的。主梁结构一般选用的造型有T形和箱型两类,箱型仅在混凝土结构主梁中被使用,该类主梁在设计时要注意保持一定的间距和片数,间距和片数呈反函数关系。梁高以及细部尺寸的确定需要进行一定的荷载计算,如主梁分布呈对称形式,则荷载分布也呈对称形式,选用杠杆法计算主梁的荷载量,反之则选用偏心受压法来计算。另外,在进行主梁结构设计的过程中,需要充分的考虑主梁结构的适用性问题,不同的主梁结构应采用不同的结构类型,具体需要结合市政桥梁的实际情况以及日后的交通量进行科学的选择。

2.2桥梁上部结构的设计要点

在进行市政桥梁结构设计的过程中,还应该做好桥梁上部结构的设计工作,具体包括如下几个方面的环节。桥体表面的结构设计工作。在桥体表面的结构设计中,应充分的考虑汽车的冲击和碾压,因此,需要考虑到稳定性的问题,需要做好结构的稳定性设计。做好桥面的二道防水层的设计工作。二道防水层的主要作用就是进行防水,避免由于水的腐蚀作用而导致桥面的腐蚀,影响到市政桥梁的使用质量。

3、市政桥梁抗震设计措施

3.1市政桥梁抗震设计总体原则

从抗震角度出发,合理的结构体系应符合下列各项要求。具有明确的计算简图和合理的地震作用传递途径;具有合理的刚度和承载力分布,避免因局部削弱或突变而成为薄弱部位;具备必要的承载力、良好的变形能力和耗能能力。从以上概念出发,理想的桥梁结构体系布置应是:从几何线形上看,桥梁是直的,各墩高度相差不大。因为弯桥或斜桥使地震反应复杂化,而墩高不等则导致桥墩刚度变化,使抗侧力桥墩中刚度较大的最先破坏。从结构布局上看,桥梁尽量保持小跨径,使桥墩承受的轴压水平较低,从而获得更好的延性;弹性支座布置在多个桥墩上,把地震力分散到更多的桥墩;各个桥墩的强度和刚度在各个方向都相同;基础是建造在坚硬的场地上。虽然由于各种限制条件,理想的抗震体系实践中很难达到,但在设计之初,仍应考虑使桥梁结构尽可能地满足上述要求。

3.2节点抗震设计

节点是连接桥墩和盖梁的传力构件,是保证整个结构良好工作的关键部位,属于能力保护构件。因此,对其强度和刚度要求都较高。在桥梁结构中,如果桥墩和盖梁刚度比较接近,则在地震作用下,结构受到侧向赓性力作用,节点核心区箍筋受力很大,容易出现节点刚度退化。一方面会导致节点核心区混凝土剪切破坏;另一方面又会导致桥墩内力重分布,墩底截面弯矩加大,更快达到屈服状态,降低桥梁结构横桥向整体的抗震能力。而在盖梁和桥墩抗弯刚度相差较大时,在地震横桥向作用下,墩底和墩顶部位的塑性铰更容易形成,节点部位相对更加安全,符合能力抗震设计思想。当节点部位出现刚度软化以后,对墩顶截面的约束减弱,从而导致墩顶截面弯矩减小。在桥梁结构中,节点构造形式与房屋框架结构中的节点相差较大,而且桥梁结构在横向地震作用下主要依靠墩柱的延性发生变形,而不是依靠盖梁的延性,因而不能套用房屋框架结构节点抗震设计。

3.3整体优化设计

从结构上来说,要清楚哪些结构有利于抗震,哪些结构抗震不利,其中包括桥型、上部结构、下部结构、墩台、基础的处理等等。构造细节措施则包括一些基本的抗震措施,比如支座的选择、挡块的设置等等,还包括构件细节的构造措施、比如墩的箍筋配置、节点配筋构造。在确定路线的总体走向和主要控制点时,应尽量避开基本烈度较高的地区和震害危险性较大的地段。对于地震区的桥型选择,尽量减轻结构的自重和降低其重心,以减小结构物的地震作用和内力,提高稳定性;力求使结构物的质量中心与刚度中心重合,以减小在地震中因扭转引起的附加地震力,应协调结构物的长度和高度,以减少各部分不同性质的振动所造成的危害作用,适当降低结构刚度,使用延性材料提高其变形能力,从而减少地震作用,加强地基的调整和处理,以减小地基变形和防止地基失效。

3.4减隔震设计

地震力的作用是巨大的,我们在市政桥梁抗震设计中一般会采用两种途径去减轻市政桥梁震害:传统抗震设计和减隔震设计。传统抗震设计是增大构件断面及配筋,致使结构刚度增大,达到减轻震害的目的;而减隔震设计是采用柔性支承延长结构周期,减小结构地震反应;采用阻尼器装置耗散能量,限制结构位移,保证结构在正常使用荷载作用下具有足够的刚度。

减隔震技术随着科技的发展以及新材料的应用,越来越多地被应用在市政桥梁抗震设计中,但它只适用于以下条件:上部结构连续,下部结构刚度较大,结构基本振动周期比较短;市政桥梁下部结构高度变化不规则,刚度分配不均匀;场地条件比较好,预期地面运动特性具有较高的卓越频率。

减隔震装置经常采用如下几种:整体型减隔震装置包括铅芯橡胶支座、高阻尼橡胶支座、摩擦摆隔震支座;分离型减隔震装置包括橡胶支座+金属阻尼器、橡胶支座+黏性材料阻尼器、橡胶支座+摩擦阻尼器。

结束语

总而言之,地震历来都是严重危害人类社会的自然灾害。如果震区的交通线遭到破坏,就会给救灾工作造成巨大困难,并且影响灾后的回复工作,加重次生灾害,导致更加巨大的损失。作为交通线中的关键环节,桥梁结构的抗震性能就成为人们特别关心的问题。

参考文献

[1]尤君鑫.关于市政桥梁抗震结构设计的分析[J].科技研究,2.15

[2]陈建兵.关于市政桥梁抗震结构设计的分析[J].城市建设理论研究,2015

[3]邹成.市政桥梁抗震设计问题研究[J].建筑工程技术与设计,2017