电力系统自动化中智能技术的应用林城文

(整期优先)网络出版时间:2019-06-16
/ 2

电力系统自动化中智能技术的应用林城文

林城文

(公诚管理咨询有限公司广东韶关512000)

摘要:电力资源在人们的日常生活中占有不可替代的地位。在互联网的时代,智能技术的应用对经济的发展做出了巨大贡献。自动化技术可以控制电力系统的每个工作环节,系统自动化技术提高电力系统的运行效率,促进了电力的发展,从而保障了人们对电量的需求。本篇文章分析智能技术在电力系统中的应用,促进电力系统的发展。

关键词:电力系统;自动化;智能技术;应用

1电力系统自动化控制与智能技术概述

电力系统自动化控制指的是在电力系统各个部分全面运用自动调整与控制技术,促使电力系统自动化水平得到提升,电力系统的控制效果得到增强。其中,配电自动化、发电控制自动化、电网调度自动化都是电力系统自动化控制技术的主要组成,通过自动化控制发电、输送等各个环节,可以对电力设备进行实时自动监视,科学调度与协调电力设备,促使电力系统安全稳定运行目标得到实现。

计算机技术是智能技术的发展基础,智能技术具有较多的接口,每一个接口的学习、适应能力较强,能够科学分析并学习产品、生产和生活过程,进而采取有针对性的优化完善措施,促使传统控制漏洞得到解决。如部分工作处于较低的状态下,传统控制技术无法发挥作用,那么通过智能技术的应用,即可对周围状况、实际问题等综合分析,结合实际需求,做出科学的反应与决策。在电力系统自动化控制中应用智能技术,能够促使电力生产效率、控制精度等得到有效提升,电力系统运行的安全性和稳定性得到保证。

2电力系统自动化中智能技术的应用

2.1对神经网络控制技术

神经网络控制技术在一定程度上发展了智能技术的新技术,该控制技术受到人体神经网络的启发,神经网络控制技术基于人工神经理论和控制理论,该技术优于其他技术和具有强大的学习和管理能力,控制电源系统的高效稳定运行,神经网络控制技术可以显着减少人力资源消耗,简化人工操作,可以随时随地实时控制。神经网络控制技术可以控制运行参数优化和诊断电力系统,促进不同功能的有效组合,以维持电力系统的稳定性。神经网络是智能控制技术与先进控制技术相比,神经网络控制技术的新发展解决了非线性和不确定失真系统的非线性问题,不确定性提供了一种新的解决方案,神经网络控制技术本身具有非线性并行处理能力。以独特方式相互连接的简单神经元。可以基于网络执行相对复杂的非线性映射。电力系统自动化中有很多隐藏的信息。在神经网络控制技术的条件下,可以简化手动控制和管理,使电力系统得到良好的实时监控和实时控制,进一步提高电力系统的效率。其次,由于神经网络管理技术是由计算机设备实现的,因此该技术基本上属于电力系统的范围。计算机技术的应用使电力系统有效地增强了数据的收集和计算。如果电力自动化设备发生故障,则在网络上显示使用神经元记录的设备的远程控制系统配置,并且神经网络控制系统的错误分析确保能量系统操作的安全性。

2.2模糊控制技术

模糊控制技术是一种基于数学理论的智能技术。它利用软件创建模糊模型,对其他技术具有很高的实用价值。在电力自动化系统的业务流程中,由于模糊控制技术的高精度,电力系统的运行得到高度处理,能量系统模仿模糊信息的推测能力,可以改变模糊控制技术可用于不确定信息,模糊技术转换成可靠信息。例如,使用电烤箱时,电烤箱中的油温通常过热这种现象是模糊控制技术有效,防止系统风险和管理现有变量,提高系统运行效率。

2.3专家控制技术

电力系统技术领域的专家控制也在更大范围内。该技术结合了相关技术专家的专业知识,为系统的智能功率控制提供了一个缺点,有效地解决了能源系统中的问题。借助这项技术,数据处理专家的知识和数字化可以转换为计算机上的程序。供电系统出现故障后,专家控制技术可以快速检测出问题和自修复错误,保护电源的稳定运行。专家系统还适用于自动化设备的管理和运行人员部署预命令控制专家系统和系统。可以根据应用和控制命令的具体要求进行组合。在专家系统控制技术的条件下,有效的报警信息可以电识别系统并有效地保护措施,控制电力系统的运行和应急措施的静态监控,恢复动态数据分析安全系统,使电力系统安全运行。

2.4线性最优控制系统技术

目前,在电力系统当中,线性最优控制技术发挥着十分重要的作用。其中,最优励磁控制就是典型的代表,系统通过对励磁控制器对发电机电压的测量结果进行自动对比与分析,在PID调节法的支持下,对控制电压科学计算,用成移相角转换励磁,可以对硅整流桥转子电压进行有效控制。实践研究表明,通过线性最优控制系统的运用,在较大程度上提升了电力系统的自动态品质、输电路的输电能力,电力系统运行质量也得到了极大的优化和完善。如果在水轮发电机组上运用线性最优控制系统,则可以对发电机的机制电阻进行有效控制,进而促使发电机组运行状态得到改善。

3电力系统自动化智能技术发展

3.1智能化实时控制

电力系统的运行往往会伴随大量数据产生,这些数据恰恰能够反映出电力系统运行的状态,反映出运行是否正常,是否存在安全隐患等问题,在整体运转过程中会对产生的数据进行监测和分析处理,都能够通过智能化的实时控制调整整个电力系统,目前的发展,电力系统与民生息息相关,当然在整体运行中也存在极大的风险性,只有不断改进电力系统中的智能技术,才可以保证电力系统的运行速度和供电能力满足需要。同时也会减少电力系统的故障和不必要的电力损耗,智能化实时控制技术发展为当前电力系统的方向。

3.2人工智能故障诊断

作为一个庞大繁琐的系统,传统电力系统的故障诊断为单向,并不能很好的和电力系统运行相匹配,其中会有很多复杂问题出现,也会导致电力系统不会稳定运行,当利用人工智能进行诊断,便可以快速有效的多层次监测,目前大型电力系统诊断工作都可以通过人工智能进行监测。这也从基础解决了电力系统自动化中可能出现的各种问题,及时发现问题解决问题,同时,人工智能的诊断技术不仅能够在电力系统静态中高效运行,还能够在动态中高效运行。

3.3综合智能控制

综合智能控制顾名思义,这是将现代智能技术有机结合在一起形成综合智能控制。通过严格控制智能技术,各种技术结合,优化了电力系统的资源配置,提高效率减少损耗,是目前电力系统自动化智能技术的发展方向。总之,随着我国经济的不断发展,电力系统自动化的智能技术处于不断发展中,民生对电力系统服务要求越来越高,而当今电力系统自动化的智能技术也越来越完善。但是,虽然现在智能技术在电力系统自动化控制越来越广泛,但是还有很多不足之处需要提高改善,如实时故障检测,这种检测对电力系统故障十分有意义,也具有很高的社会效益和经济效益。针对智能技术在电力系统自动化应用的问题,只有更深入研究,才能让日后的电力使用更加顺畅、高效、稳定,让智能技术满足社会服务的更多需求。

结束语

人们生活水平的提升,对供电质量与供电安全提出了更高的要求。这就需要将智能技术积极广泛地应用于电力系统自动化控制当中,以此来更加科学地调控设备运行,高效应对和解决故障,保证电力安全和供电质量。

参考文献:

[1]蒋蔚.电力系统自动化控制中的智能技术研究[J].电子测试,2017(10):123-125.

[2]金涛.电力系统自动化控制中的智能技术应用研究[J].科技创新导报,2017(13):88-90.

[3]陆华儿.浅谈电力系统自动化中智能技术的应用[J].科技创新与应用,2016(23):207-207.

作者简介:

林城文,男,工程师。身份证号码:4402041986****XXXX。