智能变电站继电保护系统可靠性分析贺辉

(整期优先)网络出版时间:2018-12-22
/ 2

智能变电站继电保护系统可靠性分析贺辉

贺辉

(广东电网有限责任公司云浮供电局527300)

摘要:介绍了智能变电站继电保护系统的结构及元件组成,分析了影响智能变电站继电保护系统可靠性的各种因素,准确地评估了智能变电站继电保护系统的可靠性,并从继电保护系统设计和元件组成两方面入手找出了继电保护中存在的不足,以提高智能变电站继电保护系统的可靠性。这给进一步研究智能变电站继电保护系统的优化提供了重要理论,对供电企业进一步推进变电站智能化具有一定的指导意义。

关键词:智能变电站;继电保护;可靠性;跳闸方式

智能化是电力系统未来发展的重要趋势,智能变电站是智能电网的重要组成部分,要想保证智能变电站的有效运行,就必须保证继电保护系统的可靠性。基于以上,本文简要探讨了关于智能变电站继电保护系统可靠性的相关问题。

1.智能变电站继电保护系统可靠性的重要性

可靠性是在一定时间、环境因素下,元件系统没有故障的、顺利的完成规定功率。智能电网建设中,智能变电站是极为重要的组成部分,继电保护系统的运行效果将对智能变电站的故障情况产生直接的影响。智能变电站是利用网络、信息化技术使电力系统稳定运行,其中涉及很多智能化的电子设备,对设备的安全性、可靠性以及稳定性有着很高的要求。在智能变电站运行中,运行环境、数据信息等变化会对电力系统的运行产生影响。电力系统运行过程中,继电保护系统会出现问题,需要结合故障出现的时间、地点,利用其隔离功能[1],避免电力系统受到电压、电流等危害,使电力系统稳定运行。所以智能变电站继电保护系统可靠性是极为重要和必须要的。

2.智能变电站继电保护要点分析

2.1实时性

智能变电站中继电保护系统,实时性是它最基本的特点。当采集时,电力系统交换进行数据运行时,在利用数字互感器时,要确保采样时及时得到更为准确的数据,就要保证精确可靠的交换时间。对数字信息进行交换,会有很多其他因素造成影响。如传播效率以及交换效率等。在时间上就会出现不准确,在数据传播上,就不能实现更及时更稳定性了。一般当交换器进行数据传输时,由于时间会产生合并误差,就不能对继电进行实时地保护。因此,为了得到准确性的结果,在电力系统,当我们采集数据时,要注意一定要对数据进行合理分析,研究可能在计算中出现的误差问题。由于在采集数据时,设备可能延迟会影响结果,当数据采样结束后,要拿来计算的结果对比一下采样的结果,促进系统地对电力系统继电保护实施实时性的提升。

2.2可靠性

智能变电站想要有效地对整个电子系统进行控制保护,主要采取的方式是网络信息技术的利用。智能变电站由于电子装置很多,而且电力系统是否可靠与电子装置的稳定性息息相关。如果电子装置出现不稳定问题,直接影响到继电保护,就会很不可靠。在具体情况中,电子装置受到不稳定因素主要是运行环境以及数据等方面。所以,只要电子装置达到稳定要求,继电保护系统就会更加可靠。一方面,由于外部频率因素影响电子装置,就应该使用稳定性较好的电缆以及设备。另一方面,只要对继电保护系统的保护模型进行定量分析,继而合理分析结果,如果处理继电保护装置遇到的问题,就要积极地有一定的方案做预备。

3.提高智能变电站继电保护系统可靠性的策略

3.1变电器保护

为使电网安全运行,变压器保护的可靠性也发挥着重要的作用。利用比率制动原理、二次谐波制原理等强化差动保护的稳定性。在智能变电站中,智能技术的发展与应用,依据小波理论差动保护、人工神经网络原理的差动保护能够使设备保护更加灵敏,更好的鉴别故障,但是目前这种技术成熟度不强。计算机有着明显的优势,并且相对成熟,有着很强的处理和记忆能力,能够将保护、录波以及测控等功能集合,利用网络接口及时上传设备的状态、保护以及录波数据,实时显示保护动作、参数变化等,结合实际情况修改定值或者及时投退某一功能,能够很好的提高变压器保护的可靠性。

3.2过流电限定保护

一般知道,电流过载就是过流电,如果电流过载,很有可能变电站的外部电路会有短路出现,就会给电流造成很严重的负荷压力。和正常的电流做比较,负荷电流和正常电流大小相同,一般如果变电站外部出现故障问题,都归结于负荷电流,最严重的情况就是变电站发生跳闸现象,进一步使变电站的继电保护系统可靠性降低。所以,我们对智能变电站进行继电保护时,可以利用电压进行限定进一步延时,一方面,对于负荷电流过载问题可以得到立即处理;另一方面,针对变电站,可以实现有效测量每一条的变电线路终端的电流量。如果负荷电流过载,智能变电站继电保护系统最大的优势就是可以及时报警,会根据负荷电流具体的情况,智能终端会下达保护命令,以此合理地对电力系统中负荷过载电流进行解决,促进了智能变电站继电保护系统更加可靠。

3.3运维模式优化

在运行的过程中应当加强对设备监测信息的应用,间隔智能终端和合并单元,在过程层网络中实现交换机的间隔,对公用交换机及相应的网络进行合理的调度和管理,对于不同装置软硬压板要采取不同的操作,要注重智能终端柜的现场操作和运行的注意要点。在维护的过程中,要与实际需要相结合,制定运行支持、状态评价、设备消缺等详细的现场维护作业指导手册,突出关键技术的管理程序。智能变电站的技术进步推动了继电保护管理体系的进步,一些技术原则和运行标准等需要进行变更和创新,设备状态监测是状态检修的基础,在智能变电站中,从交流采样到保护出口回路都处于监测中,要想实现良好的设备状态评估,就需要增强监控分析能力。

3.4继电保护系统线路保护

智能化变电站中,对线路的保护采用纵联差动保护方式,通常主要的装置方式分为集中式和后备式,通过合理的配置,使继电保护功能更为有效地发挥出来。该部分的保护,是继电保护系统的重要内容,它控制和保护各级电压间的间隔单元,同时完成对电力系统运行状态检测控制,是提升继电保护系统可靠性的有效方法。

3.5系统冗余设计

继电保护中,优化系统冗余能够防止出现系统错动、拒动问题,使系统更加可靠。强化继电保护的冗余性需要做好两个方面的内容。首先,利用以太网交换机中的数据链层技术,实时监控变电站的自动化。其次,变电站网络架构需求不同,依据总线结构、环形结构、星型结构3个基础网络结构的特点科学的应用。总线结构能够使接线减少,但是需要提高冗余性,使用过程中长度要求是比较大的。对于环形结构,环路上任意点都能够提供冗余,有很好的冗余性,但是需要很长的收敛时间,对影响系统重构。对于星型结构,其等待时间不长,物冗余度,可靠性不强。对于这3种结构,需要结合自身的需要优化选择,从而使变电站继电保护系统的可靠性得到提高。在对系统冗余进行设计时,还需要对投入率进行分析,不仅提高系统的可靠性,也能够顺利实现经济效益。

结论

综上所述,在智能变电站中,提升继电保护系统可靠性是十分必要的,继电保护系统的运行不是孤立存在的,其会受到站内设备、电网结构、网络情况等多方面因素的影响。本文简要分析了智能变电站继电保护系统的可靠性,并提出了提升其可靠性的策略,旨在为相关研究和继电保护系统运维实践提供参考。

参考文献:

[1]王同文,谢民,孙月琴,沈鹏.智能变电站继电保护系统可靠性分析[J].电力系统保护与控制,2015(06):585~66.

[2]王超,王慧芳,张弛,刘玮,李一泉,何奔腾.数字化变电站继电保护系统的可靠性建模研究[J].电力系统保护与控制,2013(03):85~13.

[3]童洁,陈晓刚,侯伟宏.智能变电站不停电电力系统继电保护校验技术[J].水电能源科学,2013(07):2185~221.