建筑工程结构检测技术的应用陈伟麒

(整期优先)网络出版时间:2018-12-22
/ 2

建筑工程结构检测技术的应用陈伟麒

陈伟麒

广西至正建设工程检测有限责任公司广西玉林市537000

摘要:现阶段,我国的经济发展速度十分迅速,建筑工程的技术发展也有了很大的提高,各项建筑工程也在紧锣密鼓的进行着。作为衡量工程安全的重要指标,建筑工程结构检测技术到了越来越广泛的应用。在新技术和新设备不断更新的情况下,建筑结构检测技术也应该有新的发展和创新。基于这一现状,笔者首先介绍了建筑工程结构检测技术在实践中的具体应用,然后论述了未来时期工程结构检测技术的发展趋势,以供参考。

关键词:建筑工程;结构检测技术;应用

引言

建筑工程检测主要是按照相关的标准,根据建筑施工的情况来对建筑的实体中的相关数据,性能等方面进行检测,为建筑工程的进行提供可靠的技术依据,使得建筑工程的建设能够更为准确和科学。对于建筑行业的发展而言,建筑检测技术的存在是十分重要的,是其中的一项基础工作。落实相关的检测工作,提高建筑检测技术水平对于在建筑行业不断发展,大量新型材料被引进的现代化背景下有利于为提高建筑工程施工质量提供切实保障。

1检测建设工程阶段特点

破损检测、微破损以及非破损检测是在建筑施工检测中最常见的检测技术类型,其中非破损检测是其中应用较为频繁的一种,其在保障建筑结构的基础上,通过对建筑物理量进行测量来判断检测的系数。非破损检测技术应用十分便捷,且不对建筑结构产生破坏。例如:非破损检测在对混凝土进行测量时直接检测其表面的硬度,利用磁效应来判断钢筋直径大小以及位置等。非破损检测相对于其他检测技术而言,其检测的精确度更高。然而美中不足的是检测需要花费的人力物力十分巨大。与非破损检测技术相比较,微破损技术会对建筑结构产生一定的破坏,进而达到取样的目的,以此来完成相关的检测工作,微破损能够大大减少人力物力的损耗,但是其存在的缺点也是较为明显的。首先微破损检测技术会对建筑物理结构带来轻度的破坏,且检测的结构只能够说明建筑中的一部分情况,需要加强全面的检测,并从多角度落实;其次选择微破损的检测样本不易过多。且相比非破损检测,微破损检测的精确度要低一些。微破损的检测措施主要有:检测混凝土强度时会利用钻芯法和拉拔法来检测;在对建筑进行结构性试验和破坏性检测时,是直接在建筑主体上进行的,会对建筑原有的结构产生一定的破坏。当然其也能在不破坏建筑结构的基础上进行小程度的综合实验,以此来对建筑项目的综合性能进行判断。这几种检测技术优缺点都是十分明显的,在应用过程中都会存在一定的问题。

2混凝土结构检测

在建筑工程结构的检测中,混凝土往往作为建筑的承重也荷重的部分,因此混凝土的检测可谓是工作的重中之重。在检测中一般采用以下三种手段:其一,钻芯法。这种方法就地取样,从混凝土结构中得到检测样品进行参数的分析。这种方法虽然因其对建筑结构本身造成损伤而广受诟病,但对于结构检测来说不失为一种直观的手段。只要科学的选点取样,避免对关键结构的破坏就能顺利开展工作。第二,超声波法。利用声波传播速度的原理,对混凝土的内部结构进行检测。由于混凝土的成分十分复杂,在建设时偶尔会发生内部空隙过大造成的质量问题,超声波通过波速的检测清楚的将问题反应出来。第三,则是回弹法。这种方法的使用最为广泛、简单和便捷,利用表面强度来推测结构的整体强度。

2.2砌体结构检测

出于建设的特点,砌体的结构稳定性往往会出现一些问题,而砌体一般重量也大,一旦出现质量问题,将给工程施工人员带来巨大的安全隐患。因此,对于砌体的检测可以说是十分必要的。砌体的结构检测需要考虑到本身结构的厚度以及材质的特点,一般情况下,二十四厘米的砖砌体较为常见,用原位轴压法可以有效的检测结构的相关参数。除此之外,还可以利用对砂浆强度的判断来衡量砌体的结构参数。根据砖体的不同和年份的区别,采用不同的换算系数和回弹方法,从而检测出具体的砌体强度。

2.3钢结构检测

钢结构有着重量小、结构稳定、韧性好等优点,在我国的建筑工程施工上扮演着越来越重要的角色,对于钢结构的检测技术也在持续的更新和发展。在钢结构的检测中主要针对接口的稳定程度、形变情况、尺寸规模、防火土层等,在一些特殊的工程中还需要考量钢结构的动力测试。现阶段,钢结构的检测技术也是非常多样化的,比如超声波的利用、射线的检测以及渗透的方法,将钢结构的参数从里到外的直观展示出来。不过由于钢结构在我国建筑行业的应用时间还比较短,相关的检测技术也不完善,还有很多需要改进的地方。

3建筑工程结构检测技术的发展

3.1研究新的检测方法和手段

更加精确、更少损伤、更快捷、更方便无疑是我们对现有的建筑工程结构试验技术不断改善与提高的未来发展目标。不断开发新的检测项目,使试验检测技术更加的完善便是项目检测技技术的发展方向。

3.2改良检测设备

良好的检验仪器与设备在建筑结构的检验和检测技术中扮演着非常重要的角色。如果没有完善的检测仪器和设备就无法对建筑结构进行有效检测。质量优良、操作简便的检测仪器和设备是进行高质量检测工作的保证。我们的一些机构检测仪器和设备在功能和精确度存在着不小的差距:这些差距主要表现在其工作性能不稳定、使用寿命较短,应用功能较少、仪器的体积较大等方面。

3.3超声波检测技术

超声波检测是通过分析超声波进入部件遇到缺陷发生反射的情况来确定部件内部损伤位置。超声波检测不仅能够清晰的检测到部件内部的损伤,还能够准确显示出内部缺陷的位置和大小,并测出损伤位置表面的材料厚度。超声波检测法穿透能力极强,普遍被用于超厚部件的损伤检测中,随着超声波检测技术的发展,超声波检测设备越来越轻便安全,而且已经基本实现了自动化检测。但这种方法对于检查形状复杂的工件效果并不明显,而且对部件表面还有一定的光洁度要求。

3.4雷达检测技术

雷达检测技术是利用电磁波射入混凝土介质后碰到不同介质会产生不同特点的反射波,反射波再由雷达接收,通过对内部反射波的返回时间、强度大小以及方向的检测可以判断混凝土内部缺陷的位置。雷达检测技术一般用于钢筋分布位置检测、混凝土内部缺陷位置检测、公路路面结构厚度检测、地下管线探测和隧道支撑质量检测等等,也可以使用地质结构的探测中,雷达检测技术的缺点是成本较高,如果要产生高强度的雷达波,需要庞大的雷达设备。

3.5非线性诊断,提高实用性

建筑工程的结构往往都是十分复杂的,相关的检测技术在应用上需要根据具体的建设情况来选用方法和制定方案。比如说建筑结构中的非线性检测,就是充分考虑了建筑结构的实际情况,对复杂的结构用用更准确的方法来检测。线性的检测方法在于有一定的规律性,可以通过计算简单的得出,设备的放置也显得容易。而对于非线性检测技术来说,计算就变得相当复杂,需要检测人员将检测部分细分为小模块进行开分计算和测量,然后在进行设备的安置。在实际的建设中建中结构往往不遵循一定的线性结构,所以在应用检测技术上就需要工作人员因地制宜,合理的调整方案提高检测技术的实用性。

结语

建筑工程的质量不仅影响着施工人员的工作环境,也对城市居民的生存居住环境有着重要的意义。通过不断丰富和完善建筑结构检测技术,有效的提高建筑工程的施工质量,为人民的生命和财产安全提供了保障,是利国利民的大计。在本文中笔者也做了一些相关的思考,但是要想切实提高相关的检测技术,还需要业界和学界的有识之士与时俱进,结合先进的科学技术与实践经验不断的提高建筑工程结构的检测技术,为我国现代化城市建设贡献一份力量。

参考文献:

[1]陈霞.建筑工程结构检测技术的实际应用探讨[J].城市建筑,2015(8):97.