智能变电站继电保护可靠性探究梁锦超

(整期优先)网络出版时间:2018-12-22
/ 2

智能变电站继电保护可靠性探究梁锦超

梁锦超

(广东电网有限责任公司江门供电局广东江门529000)

摘要:智能变电站保护调控一体化实现各个系统的互联互通,提高变电站的继电交互能力,支持对变电站进行保护调控。智能变电站继电保护可靠性和电力系统运行的安全性与经济性息息相关,但当下智能变电站经常发生故障,迫使相关技术人员必须大力探究继电保护可靠性,保证智能变电站安全稳定运行,保证电力系统健康稳定发展。

关键词:智能变电站;继电保护;可靠性

1智能变电站继电保护可靠性概述

智能变电站不仅具备通信网络化特征,还具备智能化和运动管理自动化通信协议,具有模型统一化等特征。但因电子装置稳定性的影响因素较多,涵盖环境和信息数据之间的同步、电池兼容、开关设备频率等,对继电保护可靠性产生影响,引发可靠性问题。所以智能变电站在实施继电保护时应保证光缆线的稳定性较高,减少电子装置被干扰的频率。鉴于此,可以采取先进科学技术帮助智能变电站继电保护系统进行自我检测,及时快速反应系统警告,同时建立配电保护可靠性系统模型,定量分析可靠性。在智能变电站继电保护应用实际中,应充分考虑保护机制的要求,针对实际情况加强分析系统应用形式,满足系统设计整体化要求。在选择可靠性参数时,因智能变电站使用情况复杂,环境不同时会选择不同的参数。在检修一次设备或二次设备原件时则要及时处理原件出现的故障,部分故障可通过使用新型智能电子设备加以解决。鉴于概率评估系统对继电保护可靠性的要求,需分析各类指标,避免因系统状态设计合理性不足而引发故障。处理原件应及时,针对EM、SW、Wire原件所处系统展开分析,及时有效处理故障。在智能变电站继电保护系统应用中还经常面临丢失信息的问题,此时可把原件失效模式分成误动与拒动两种情况,之后再科学评估失效概率。记录原件时还必须充分考虑各个原件的关系,当只有两个原件均发生拒动时才能发挥出关联环节的作用,保证智能变电站继电保护的可靠性。

2继电保护装置的应用模式

2.1“直采直跳”继电保护模式

常见的直采直跳继电保护方式分为三种,主要构成模块为智能终端—合并单元—母线合并单元,智能终端—线路保护—间隔交换机—中心交换机—母差保护。中心交换机又分为间隔交换机—母联间隔交换机。间隔交换机—支路1间隔保护,间隔交换机—支路n间隔保护。三种保护方式分别是主变继电保护、线路继电保护、母线继电保护。

2.2“直采网跳”继电保护模式

直采网跳继电保护方式同样分为主变继电保护、线路继电保护、母线继电保护三种继电保护方式。工作模块分为智能终端—线路保护—间隔交换机—合并单元,智能终端—线路保护—间隔交换机—母线合并单元,智能终端—线路保护—间隔交换机—对时源,智能终端—线路保护—间隔交换机—中心交换机—母差保护等。采用这种继电保护作业方式时,在主变保护过程中,模块组成结构会发生变化。保护结构中增加了高压侧母线合并单元,中压侧母线合并单元,中压侧交换机以及低压侧交换机等。应用不同的模块可以组成不同的继电保护系统,这样在进行继电保护工作时,就能提高智能变电站的变电安全性。

3提升智能变电站继电保护系统可靠性的方法

3.1提升变压器保护的可靠性

随着通过变压器的电流增加,它会使变压器的额定电压显着增加。当变压器中的实际电压值超过额定电压的变压器时,会造成变压器的损坏。因此,变压器的电压可以调整到可以保护的额定电压范围内。在使用配电保护装置进行变压器保护的时候,通常需要分析该装置的应用特点,将配电线路的电压调整在额定极限内,这样可以保证配电电压的稳定性,实现变压器的保护功能。在变压器保护中,通常采用分布式的保护方式来进行电压的配置,这样可以显示电路中的有关电压异常的状况。在配电保护工作中,还可采用单独的安装方式建立非大功率继电保护,使用电缆连接路由器的方法进一步安装继电保护装置,从而实现变压器保护。

3.2运用继电保护系统保护间隔层以及过程层

为了保证智能变电站能够安全、稳定的运行,继电保护系统需要运用双重化配置的。一旦出现变电站后备或者开关失灵的状况,为了实现对相连区域和母线之间相邻线路的保护,就需要及时开启后备保护系统,然后仔细检查后备电路的设备电流情况,从而能够对整个系统运行故障做出准确的判断。在实际应该过程中,要想让电网运用过程更加稳定,就应该及时调节变电站中的所有电压情况,通常是运用等级集中制的方式。为了让继电保护系统能够更好的应用到变电站中去,需要做出合理的运行方案,然后改变整个变电站的运行模式。智能变电站过程层的主要作用是可以在母线和线路以及变压器等装置出现故障的时候,及时跳闸从而降低其出现的危险实现对整个系统的保护。因此,过程层对整个系统的安全稳定起着很重要的作用,根据整个系统内大多数设备来看,使相应的设备能够做好自身的保护作用,就可以使智能变电站运用过程更加的可靠。

3.3完善过流电限定保护

在人们的实际生活中经常会出现一种情况就是电流发生了超负荷的现象,这种情况就会给人们的生活造成困扰,因此要保证人们的正常生活,首先就要做到保证过流电的正常使用。要找到变压器配置保护的主要原因,在智能变电站中电流运行经常会出现电流过载的这一种现象,就是外部发生的故障进而导致电流跳闸,在实际的研究中发现这种超负荷电流与其他电流之间大小存在非常大的差距。因此首先做到的就是要对电流进就行准备的测量,一旦发现电流超负荷的情况,就要立即采取方法,降低电流的使用量,并及时向智能端发出警报,使用变压器配置进行全面的保护,这样才能提升基调保护系统的可靠性。

3.4继电保护系统的线路保护

在实际的智能化变电站中,首先做到的就是要结合实际的用电配置对电流的使用情况进行保护。想要更好的做到这一点就需要采用一种方式进行使用,这种方式就是纵连差动的方式对线路进行全面的保护。这种保护措施主要的保护对象就是线路。主要的工作方式就是将控制一级保护各级电压之间的间隔单元,在控制间隔单元之后对线路进行集中式和后背式的装置方式在整个系统中主要可以对电力系统的运行状况进行实地的监测。首先确定的就是继电系统的整个线路对继电情况进行保护的过程中,不仅可以保护系统中的重要环节,同时更有助于保护机电系统的可靠性。

3.5优化系统的冗余性设计

在继电保护过程中,系统冗余的优化能更大程度地避免系统错动和拒动问题的出现,进而促进系统的可靠性。继电保护系统的冗余性增强可以从以下2个方面着手:(1)利用以太网交换机中的数据链路层技术实现变电站自动化实时监控;(2)根据变电站网络架构的需求的不同,基于总线结构、环形结构和星型结构这3个基础网络结构的特点进行合理选择应用。总线结构可以有效地减少接线,但同时冗余性有待提高,在使用中对时间长度的要求较大;环形结构由于其环路上的任意点都能提供冗余,冗余性较好,但是收敛时间较长,对系统的重构影响较大;而星型结构的特点是等待时间短、没有冗余度,其可靠性比较低。针对3种结构的不同特点结合自身需求进行合理选择,才能提高变电站继电保护系统的可靠性。此外,在优化系统冗余设计时,应合理分析自己的投入率,在提高系统可靠性的同时注意经济效益的实现。

4结束语

通过上文的探讨可以得知,智能变电站继电保护系统的可靠性对整个电网系统的安全稳定运行有重要的意义,而继电保护系统的构成导致其受到很多因素的影响。因此,如何提高智能变电站继电保护系统的可靠性是电力行业的一项重要工作。

参考文献:

[1]王同文,谢民,孙月琴,沈鹏.智能变电站继电保护系统可靠性分析[J].电力系统保护与控制,2015,43(06):58-66.

[2]刘洋,马进,张籍,陈艳波,杜治,蔡勇,颜炯,谢东.考虑继电保护系统的新一代智能变电站可靠性评估[J].电力系统保护与控制,2017,45(08):147-154.

[3]刘忠民,牟小雪,黄凤英.浅析提高智能变电站继电保护可靠性的措施[J].电子测试,2016,(01):107-108.