高速动车组制动盘运用现状及其发展趋势

(整期优先)网络出版时间:2019-12-03
/ 2

高速动车组制动盘运用现状及其发展趋势

董琳

中国铁路北京局集团有限公司北京动车段 北京 102600

摘要:随着铁路“引进技术-消化吸收-再创新”战略的实施,我国高速动车组制动技术达到了国际先进水平,CRH系列动车组分别采用了德国克诺尔公司和日本纳博特斯科公司的制动系统,使我国微机控制直通电空制动技术、大功率盘形基础制动技术得到显著提升。我国动车组制动技术的自主研发取得突破,自主研制的动车组制动系统和关键部件已在标准动车组和部分既有动车组上投入运营或运用考核。近几年,国外知名的轨道车辆制动系统开发商不断推出新的制动系统产品,对我国动车组制动技术的持续改进和发展具有借鉴作用。

关键词:高速动车组;制动盘;运用现状;发展趋势

1我国高速动车组制动系统技术现状

1.1基本技术现状

国内批量运用的CRH系列高速动车组均采用微机控制直通电空制动控制技术和大功率盘形基础制动技术,制动技术主要来源于德国克诺尔公司和日本纳博特斯科公司。另外,CRH3/5、CRH380B/C型动车组还装有备用自动空气制动装置,CRH3/5以及CRH380B/C/D型动车组装有撒砂装置,CRH2系列和CRH380A型动车组装有踏面清扫装置。在制动控制方面,CRH2系列和CRH380A型动车组按1动1拖或2动1拖为单元进行制动力管理,CRH1/3/5、CRH380B/C/D型动车组按整列车进行制动力管理。常用制动时采用动力制动(再生制动)和空气制动(或空气-液压制动)的复合制动方式,优先使用动力制动,当动力制动力不能满足制动力需求时,空气制动力自动补偿,制动过程中制动力能根据理论黏着力要求和车辆载荷变化自动调整,具有冲动限制功能;紧急制动时根据速度-黏着变化进行制动力分级控制,采用克诺尔制动技术的制动系统设有空重车调整阀,能够根据车辆载荷变化自动调整制动缸压力,采用纳博特斯科制动技术的制动系统通过减压阀调整制动缸压力。在防滑控制方面,采用克诺尔公司制动系统的动车组,空气制动和电制动的防滑控制分别由空气制动系统和牵引系统完成,采用纳博特斯科制动系统的动车组,牵引系统不进行防滑控制,只有空气制动系统进行防滑控制。防滑系统针对充分利用黏着和如何进行超低黏着条件下的防滑控制采取了相应的技术措施。

1.2关键技术掌握情况

通过对引进制动技术的消化吸收和国产化,既有动车组制动系统的大部分产品已实现国产化生产,但部分核心技术仍掌握在国外公司手里。克诺尔公司的制动系统,国内技术受让方为铁道科学研究院机车车辆研究所的北京纵横机电技术开发公司(以下简称铁科院),铁科院主要负责基础制动夹钳单元总成和部分制动控制部件的生产,克诺尔车辆设备(苏州)有限公司主要负责制动控制系统总成和部分夹钳单元部件的生产,制动盘由铁科院和克诺尔公司的合资公司生产,闸片由克诺尔公司提供,风源系统由克诺尔南口供风设备(北京)有限公司生产。纳博特斯科公司的制动控制系统,国内技术受让方为南京中车浦镇海泰制动设备有限公司(以下简称海泰公司),电子制动控制单元软件和硬件、EP电磁阀线圈、部分橡胶件和弹簧需要从纳博特斯科公司进口,其余零部件的生产、制动控制系统总成由海泰公司完成。

2制动盘材料的现状及发展趋势

2.1铸铁材料

在低速列车制动系统中,一般采用铸铁材料,而速度等级的不同,铸铁材料的成分也有区别。目前使用的铸铁制动盘材料主要有普通铸铁、灰铸铁、球墨铸铁、蠕墨铸铁、低合金铸铁等。铸铁制动盘具有摩擦性好、耐磨、耐热、抗热裂纹-抗变形及可铸性好等优点,但其强度低,一般能承受350℃以下的制动能力。为了提升铸铁材料制动盘的性能,逐步开发了球墨铸铁、蠕墨铸铁、低合金铸铁等较好的铸铁材料,使得制动初速可以提升至时速160公里级以上动车组的制动能量,但在时速200公里初速制动就明显超出铸铁材料的使用温度。

2.2合金钢材料

在时速200公里以上动车组制动系统中,铸铁材料已经无法满足制动要求,因此开发了热承受能力更强,机械性能更高,疲劳性能更好的合金钢材料制动盘,目前运用主要有锻钢材料和铸钢材料,而这两种材料仅是成型工艺不同,从而对制动盘本身缺陷控制能力高低的影响,从热承受能力来说两者无太大差异。合金钢材料制动盘相比铸铁材料主要特点:有较高的温度稳定性和较少的热裂纹趋势;对潮湿环境的敏感性较低;在高制动压力时,闸片磨耗较少;在高温时具有较均匀的摩擦系数。因此,合金钢材料如今已经大批量使用在高速动车组中。

2.3铝合金材料

随着高速动车组速度不断提升,动车组自身的重量将对动车组继续提速产生障碍,因此,研究动车组轻量化设计将成为目前高速动车组设计的一大原则,而制动盘属于簧下质量,其质量的减轻更有助于车体的减重。许多科研单位已经开始着手铝合金制动盘的研究,只因铝合金材料的密度仅为铸钢材料的1/3,对减轻整车重量具有关键性的作用。陶瓷颗粒增强铝合金基复合材料是以SiC或A12O3等陶瓷颗粒为增强体、铝合金为基体的新型材料。由于该材料既具有其陶瓷颗粒组份的高耐磨性、高硬度(强度)及低膨胀系数的特点,又具有其基体组份铝合金的良好热传导性和低密度的特点,因而在制动盘方面的应用得到了世界各国的广泛关注和研究,被认为是高速列车制动盘钢铁材料的理想替代材料。铝合金材料虽好,但到目前仍未批量运用,主要原因有二,一是陶瓷颗粒增强铝合金基复合材料的塑性较低,制动盘在承受交变热负荷时,在铝合金基复合材料中一旦出现裂纹萌生,就很容易扩展,结果导致突发事故;二是与其对磨的有机摩擦材料磨耗较大,配副闸片的更换频繁,因而必须采用与之相配套的摩擦材料制作闸片。

2.4碳陶材料

合金钢材料和铝合金制动盘一般可以运用于时速400公里及以下动车组基础制动系统中,在时速400公里以上时,制动能量热负荷将达到800℃以上,钢系材料也无法满足如此高速的制动能量,因此需要开发一种既能减轻重量又能承受1000℃以上的制动盘材料。C/C复合材料的卓越高温摩阻性能使其具有其它摩擦制动材料无以比拟的优势,因而是超高速列车的首选摩擦制动材料。C/C复合材料作为列车制动摩擦材料存在的问题主要表现在以下三个方面:一是成本较高;二是摩擦系数随制动初速度增加变化较大;三是密度较低的C/C复合材料中存在的气孔在潮湿环境下吸湿而会引起制动过程中摩擦系数大大下降,从而影响列车行车安全,这需要从提高C/C复合材料的致密度;进行完整的表面处理和适当的结构调整等方面加以改进。

3结论

我国高速动车组已经发展超过十年,其中盘形制动系统中有铸铁制动盘、铸钢制动盘、锻钢制动盘以及即将要运用的碳陶制动盘等复合材料制动盘,制动盘运用主要取决于制动能量的大小,简单的说,与动车组制动速度和载荷情况密切相关,需要严格计算校核选型,使得每种制动盘都能发挥其应有的作用。随着更高速度的动车组研制,各种新材料制动盘也将登上历史舞台,为高速动车组的发展提供技术支撑。

参考文献:

[1]朱彦平,金文伟.高速动车组制动盘运用现状及发展趋势[J].内燃机与配件,2018(19):62-64.

[2]赵志春,王开团,赵美钢.高速动车组制动减速度监控技术的初步探讨[J].铁道车辆,2018,56(09):27-28+5.

[3]龚超成.高速动车组制动系统防滑策略分析[J].中国战略新兴产业,2018(16):167.

[4]赵春青.高速动车组制动系统可靠性建模与评估研究[D].北京建筑大学,2018.