风力发电对电力系统的影响分析

(整期优先)网络出版时间:2019-12-05
/ 2

风力发电对电力系统的影响分析

焦立国

国电华北内蒙古新能源有限公司 , 内蒙古自治区呼和浩特市 010000

摘要:我国作为一个能源生产和消耗大国,发展清洁能源对于解决能源短缺和环境保护具有重要意义。风电技术可以减少化石燃料对环境的污染,降低有害气体的排放,保护生态平衡。本文主要分析了风力发电对电力系统的影响。

关键词:风力发电;原理;特点;影响

引言

风力发电规模迅速扩大,风电场并网是电力系统发展趋势。但风力发电过程中产生的电力谐波、电压波动及闪变等问题,严重影响着风力发电的效率。只有这些问题得到有效解决,才能发挥风力发电效能,使整个发电系统稳定运行。

1 风力发电原理

风力发电的原理是把风能转化为机械能,再将机械能转化为电能进行输出。具体过程是通过风带动风机叶片转动,从而使发电机内部线圈旋转切割磁场,最终产生感应电流,并被储能装置以电能的形式储存起来。通常风力发电机由风轮叶片、低速轴、高速轴、风速仪、塔架、发电机、液压系统、电子控制系统等部件组成。其中,风轮是将风能转化为机械能的装置,根据风向的变化调节风轮方向,可以最大限度地利用风能。塔架是连接支撑风轮和发电机的支架,其高度是由周围地势和风轮大小决定的,以确保风轮的正常运行。发电机是将风轮产生的机械能转化为电能的装置[1]

在风机构造中,定义风轮叶片尖端线速度与风速之比为叶尖速比,是风机的重要参量,其大小是影响风机功率系数的重要参数。通过设计风轮的不同翼型和叶片数,可以改变叶尖速比。风机组的功率调节是风力发电系统的关键技术手段,其主要方式包括定桨距失速调节、变桨距失速调节和主动失速调节三种。定桨距失速调节将风机叶片和轮毂固定,叶片顶角不能随风速进行调整,其结构相对简单,可靠性强,风机输出功率随风速而变化,因此在低风速下其利用率较低。变桨距调节是通过改变桨距角调整风能的转化效率,尽可能的提高风能转化效率,使风机输出功率保持平稳。主动失速调节是通过叶片主动失速来调节输出功率。当风速低于额定风速时,通过控制系统进行调控;当风速超过额定风速时,变桨系统通过增加叶片攻角使叶片失速,从而限制风轮的吸收功率[2]

2我国风力发电的现状及存在的问题

我国幅员辽阔,风力资源极为丰富,十分有利于风电行业的发展。近年来,国家对风电产业的发展十分重视,投入了大量的研发人员和资金,累计和新增风电装机容量世界排名第一。我国风力资源主要分布在地广人稀的西部地区、华北丘陵地区以及东南沿海地区,累计建设了180 多家风力发电厂,很好的缓解了当地的用电荒问题。

目前我国风力发电系统中的大部分部件和技术都是自主研发,但是核心部件还是依靠国外进口,缺乏自主技术。由于风电技术在我国发展的时间较短,同时我国风力资源分布不均匀,风电技术存在市场化水平低、技术欠成熟、安全保障不足等问题。

风力资源分布不均匀导致风电场发的电需要通过远距离输送到需要电的地区,同时风力资源较匮乏的地区无法建设风力发电站,造成风电技术发展不平衡。风能的间歇性和不稳定性也会导致电能质量较低。此外,部分地区对清洁能源的认识不够深刻,忽视了风电技术对环境带来的红利,导致没有对风电资源进行充分开发。由于我国风力发电技术发展时间较短,缺乏自主化技术,很多核心技术和部件还需要依赖西方发达国家,这样就造成被动的技术依赖和过高的资金技术消耗。同时风电传输技术和设备的不完善,风电机组运行存在安全隐患,电力运营管理人才缺乏,都是制约风电技术的瓶颈。当前风力发电行业的商品化程度依旧较低,缺乏一套完善的市场体制来保证行业的稳定发展,国家尚需投入大量人力物力财力来发展配套设施和人员[3]

3风力发电对电力系统的影响

3.1对配电网规划的影响

当分布式电源接入到输电主线路的时候,使得整个电网的负荷规划和运行都存在着很大的不确定性,风力发电所产生的电流进入线路主线路会改变整个电网的负荷,加大了电网规划人员对电力负荷的预测难度,更为严重的是分布式电源装机大小,发电容量都参差不齐,对其整个线路的规划会产生比较大的影响,而且如果分布式电源接入配电网位置和容量大小不合适的时候,不但不会起到传输电能的作用,还有可能导致电能亏损,引发电压波动,导致整个线路的故障,甚至出现一些安全隐患。

3.2对主线路系统可靠性的影响

分布式电源接入到主线路电路之中可能会降低电力系统的可靠性,分布式电源不具备低电压击穿能力而且是并网运行。当电路发生故障之时,分布式电源会增加电压的跌落。如果分布式电源不能及时跳闸拖网就会造成非同期重合会引发电器设备的损伤和,保护误操作。分布式作为备用电源时候就可以消除电网的堵塞和负荷。支持系统电压提高电网的安全可靠性。如果此种分布式电源具备低电压击穿能力,那么当电网发生故障之时,分布式电源还可以继续工作,从而起到缓解电压骤降的效果

[4]

3.3对电能质量的影响

风力发电所产生的电流接入电路组线路之后。有有些原先的辐射状结构转变为,多电源结构。导致电路中的实际电流会发生一定的变化,使得整个主线路电网稳定电压随之发生改变,原有的电压调节方案显然已经不能对其进行匹配。因此就需要重新对主线路特点进行评估,重新定制新的调压方案,防止分布式电源接入电网以后所产生的一些安全隐患。传统的电力输电网络一般都是一种放射状的结构,这种结构的好处就是为了保证电流保护的经济性以及运行的简单性。分布式电源接入到电力系统配电网络之中改变了这一种结构,就会对机电气保护形式产生较大影响,可能会导致电力系统的继电保护装置失灵,还可能导致电力系统保护出误操作,在馈线附近的故障问题,可能会致使本来并无障碍的馈线出现跳闸的现象。风力发电技术还会引发谐波问题,因为分布式发电所产生的电能是通过一边去引入电路主线路的,其本身就是一个谐波源,这会给电网代入围绕开关频率附近的谐波分量,引发谐波问题,从而影响到,电能传输的质量[5]

3.4对整个电力行业的影响

风力发电技术的不断革新对传统的电力市场走向甚至未来的格局会产生深远的影响,因为风力发电技术的产生也打破了传统的电力行业的垄断。用电户有两个选择,一是还是使用原来的集中式供电网络;二是可以自己建立分布式电源或者是为电力公司有偿提供紧急功率支持的服务。风力发电也增大了电力行业的竞争,随着我国对电力行业进行改革,使得整个电力行业也开始着手于电力营销工作,整个行业的竞争越来越强,在这种大背景之下,风力发电模式的兴起对整个电力行业会带来较大的影响,甚至还会引发行业的深刻变革,在不久的将来可能每一个用电客户都可以拥有属于自己的风力发电设备[6]

结束语

风能是一种清洁的、有可靠成本效益的发电资源,具有很高的环境效益和社会效益。全球市场对于风力发电这样的具有很高环保效益和社会效益的技术有着巨大且持续增长的需求。随着风电技术发展,我国风电装机容量不断上升,风力发电将逐步成为电力系统重要的电力来源。

参考文献

[1] 汤韬.大规模风电场并网影响的研究[D].长沙:湖南大学,2011.

[2] 黄永宁,张爽,周建丽,等.风电场风力发电机类型对网侧电能质量特性的影响[J].电力建设,2013,34(5):99-105.

[3] 魏巍,关乃夫,徐冰.风力发电并网技术及电能质量控制[J].吉林电力,2014,42(5):24-26.

[4] 李雅倩,茹意,何瑶.风力发电中电力电子技术的应用[J].科技风,2018(17):202,211.

[5] 周利鹏. 风力发电并网技术及电能质量控制措施探讨[J]. 科技创新导报,2018,15(36):70-71.

[6] 林静, 蒋雷. 风力发电并网技术及电能质量控制策略[J].通讯世界,2018(05):241-242.