高压输电线路的防雷技术研究

(整期优先)网络出版时间:2021-04-12
/ 2

高压输电线路的防雷技术研究

唐鑫

重庆广汇供电服务有限责任公司市北分公司,重庆 401120

摘要:电力系统是人民生活的关键保障,电力运输系统是保障电力系统稳定运行的重点。电力运输过程中最常见的就是因打雷而出现的系统跳闸或漏电现象,严重影响电力系统的安全稳定运行,更严重时甚至会带来一系列安全事故危害人身安全。因此,解决输电线路雷击跳闸工作已成为输电线路工程的重中之重。

关键词:电力高压;输电线路;防雷技术;措施分析

1输电线路雷电防护的重要性

通过对电力系统的故障检测结果发现,雷击给架空输电线路带来的供电故障不在少数,尤其是在那些雷电频繁发生的地区,只要发生电力系统故障,基本上都是由雷击造成的,人民日常生活也深受其害。另外,在山区地段,由于地理位置的原因,传输线会在大山上起伏架设,因此传输线会出现很大的垂直高度差,这就给冷热空气提供了很好的交替场所,空气对流现象频繁,传输线容易受到闪电的侵袭。因此,在线路的初步设计中,有必要考虑防雷结构的设计并阐明其合理性和重要性。

2雷击线路跳闸原因

目前,我国的配电线路的抗灾害能力正在逐年增强,配电线路的抗雷能力也得到了长足的发展。但是,配电线路的抗雷能力仍然有较大的进步空间,雷击不同于其他灾害,在雷击发生时,往往会对配电线路造成极大影响,导致配电线路跳闸等问题,目前,经过电力企业的实践研究发现,配电线路遭受雷击后,导致跳闸的主要因素可以分为四个,首先是配电线路绝缘子的绝缘能力,其次是配电线路是否配置架空地线,接着是电机产生的电压和电流强度,最后就是杆塔本身的接地电阻,加强这四个方面的工作,可以有效地减少因雷击事故造成的跳闸。雷击后配电线路跳闸的主要原因主要分为两种,雷电绕击线路以及雷电反击线路。

2.1雷电绕击线路

雷电绕机线路事故的发生,主要和避雷线边导线的保护胶以及杆塔的高度相关。在部分地势较高的山区中,往往会因为杆塔之间的距离较大,杆塔与杆塔之间的高低落差大等原因,更容易发生雷电绕击事故。不仅如此,在一些平原地区,雨季时间较长,或者雷电天气发生概率较高的地区,雷击事故的发生概率也较高。因此,想要加强配电线路的抗雷能力,就必须考虑到杆塔所在地区的地质、生态以及气候问题,单单从配电线路的设备进行改造,并不能完全满足配电线路的抗电需求。

2.2雷电反击线路

在雷电天气下,雷电电流直接击中线路,电流通过整个配电线路,直至接地体,在这个过程中,会直接导致杆塔的电位急剧提升,无法维系导线电压的平衡,导致导线感应器接收到的电压超过配电线路的最高电压承受能力,发生绝缘闪络问题,该种闪络就属于反击闪络,也就是雷电反击线路。

3具体防雷措施

3.1架空线路绝缘防护

施工架设输电线路时,一定要考虑架空输出电路的绝缘问题,并且针对不同海拔水平设置严格的标准,其中有一条满足大多数地区要求,就是在海拔1km以下的地区,110kV高压输电线路在架设悬空的绝缘子串时,绝缘子的数量应控制在7~8片。

3.2接地射线

在对110kV的高压电传输线路进行维护时,最应该考虑的是接地设备的改进问题。由于改进后的接地装置不仅可以达到降低线路塔遭遇雷击后的跳闸概率的目的,甚至降低的程度可以达到20%~30%,如果一开始电力公司安装的线杆接地设备效果不好,通过对接地装置进行改良后所能降低雷电击中而发生线路跳闸的概率可以高达一半左右。在改进接地装置时,可以使用减小接地塔电阻的方法。具体方法是将接地电极埋至深处,然后填充低电阻物质。将地线布置在水泥式杆塔线上时,与杆塔之间的距离应该为3~5m。布置塔架线路的垂直接地极时,与杆塔之间的距离应该控制在5~8m。另外,接地装置也可以通过增加耦合清洗来进行改进。不过值得技术人员考虑的是,雷电在击中高压线路的过程中会存在瞬态行波和稳态电磁感应现象,因此可以考虑通过加强电磁感应式塔架接地线来改善接地装置。另外在检测到土壤中的电阻率超过1000Ω·m,可以考虑引入110kV的高压电线来增强电磁感应塔接地梁结构的搭设。

3.3避雷针防护

在进行雷电防护过程中,发现有些电力杆塔的位置很高,因此闪电发生的位置会与高压塔线之间的距离非常接近,甚至是直接与塔线平行,在这种情况下,塔所在的电磁环境极其复杂,如此近距离地接触也大大增加了因雷击而跳闸的概率。为了更好地应对这种状况,考虑在塔架上安装侧向避雷针。具体的方法与途径是在110kV架空传输线的两极安装侧向的避雷针,同时在避雷针上增设绝缘体,目的是在引入雷电的同时提高绝缘效果,希望通过这个侧向避雷针来减少雷击现象的发生。

3.4降低保护角

在众多保护电力传输线路的方法中,还有一种较为常见的方法就是在搭设初期将保护角调低,所谓的降低保护角,其实就是通过这种方式来降低传输线的耐雷击性能。不过这种方法有很大的局限性,不能在已经建成或已经投入运行的线路中使用,这种线路的保护角无从更改。

3.5降低杆塔的接地电阻

接地电阻增加的原因主要分为四种,分别是接地体腐蚀、雨水冲刷、施工时化学降阻剂性能不稳定以及外力破坏。接地体腐蚀主要发生在土质属酸性的土壤中,由于接地体长时间与突然接触,长期的腐蚀极易导致接地体的导电性能降低,有时甚至会发生接地体无法与地面良好连接的情况,导致雷击事故发生时无法将电流导入地下。解决这种问题地最佳方式就是使用扛腐性能好的材料做接地体外表皮,并且通过喷洒肥料等方式改变酸性土壤。

雨水冲刷问题多发生于雨季较多的山区,长时间降雨导致埋土深度较浅的接地体暴露在表面,甚至悬浮在空中。在杆塔下半部分用水泥以及钢筋加固土壤即可。

降阻剂问题,在施工过程中使用化学降阻剂,往往会因为降阻剂的质量问题以及降阻成分流失等问题造成杆塔接地体电阻增加,解决该问题只要适当检查接地体的电阻,并适时进行检修即可。

外力破坏问题,外力破坏主要分为人为破坏和环境破坏,人为破坏就是接地体被盗,该类问题会直接让配电线路丧失抗雷能力,并且增加了配电线路的维护成本。环境破坏则是由于山体滑坡、滚石等原因造成的不可预知的破坏。可以在杆塔附近围上较高的铁丝围墙,以此避免接地体被盗或者破坏。

3.6安装氧化锌避雷器

氧化锌电涌放电器是一种可以长期有效提高线路耐久性水平的设备。这种设备存在的优点是可以应用于实际情况十分复杂的区域,比如难以改善接地电阻的区域、雷电极其活跃的区域等。经过多次试验及研究分析发现,使用氧化锌电涌放电器可以对线路的故障率和跳闸率达到很好地改善效果。

4检修和防护说明

防雷检测作为一种保护电力系统正常稳定运行的必要方式,在电力检修和维护过程中十分常见。虽然至今为止我国的防雷技术已经有了很大的发展,但在面对电力问题时,仍要严阵以待,日常维护和定期保养必不可少,这也是保障电力系统安全稳定的有效保证。另外,在高压输电线路架设的过程中,必须严格遵循国家标准和有关规范要求,规范搭设过程,检查好每一步,通过严格和规范的检查与现场控制来提高高压电力输电线路的整体工作效率,降低线路故障发生的概率,从而降低由于传输线故障造成的损失。

5结束语

在配电线路的众多危害中,雷击危害造成的影响最为严重,且无法预防。因此,加强高压配电线路的抗雷能力就成为了当下电力企业的重要工作。通过对避雷器以及接地体的优化,以便于配电线路抗雷能力的优化,并以此保障我国电力的输送质量。

参考文献:

  1. 李京官, 和刚. 电力系统220kV输电线路综合防雷技术研究[J]. 电力设备管理, 2019, 000(002):P.45-47.

  2. 王里. 高压输电线路的综合防雷策略探讨[J]. 低碳世界, 2019.

  3. 潘崇杰. 输电线路防雷接地设计的问题与改进方法探讨[J]. 农村电气化, 2019, No.385(06):31-33.

  4. 舒雅平. 高压输电线路防雷中存在的问题及对策[J]. 中国新技术新产品, 2019, 000(021):143-144.