汽车电子机械制动关键技术分析

(整期优先)网络出版时间:2021-08-19
/ 2

汽车电子机械制动关键技术分析

李佳德

河北瑞腾新能源汽车有限公司,河北石家庄 050000

摘要:随着社会经济的迅速发展与生活品质的不断提升,人们对汽车提出了越来越大的要求。安全、绿色、节能已成为未来汽车发展的总体趋势。机械制动系统是汽车结构中一个主要构成,关系到汽车的安全性能。现阶段,在汽车盛行的时代,提升汽车制动的安全性显得异常重要。可以有效地避免交通事故的发生。在计算机技术与电子控制技术的不断发展,带动了汽车制动技术的进一步发展,研发了更为先进的机械制动技术。鉴于此,文章对汽车电子机械制动系统的构成及关键技术进行了研究,以供参考。

关键词:电子制动;系统构成;关键技术

1汽车电子机械制动系统概述

在汽车电子机械制动工作过程中,制动踏板和制动器是最关键的两个基础结构单元,维持两者的非机械连接性,才能满足制动的实际应用要求。另外,汽车电子机械制动系统中,还需要配合电子元件实现信号和指令的处理,相较于传统的液压元件,其大大提升了安全的效率和应用的效果,并且减少元件空间占比,在满足多元组装和整合的基础上,形成更加和谐且应用效率高的运行整体,为系统综合功能和特性优化奠定坚实基础。第一,制动踏板模拟设备。是电子机械制动系统的核心元件,最基本的作用就是能配合驾驶操作,驾驶员在向踏板施加作用力后,汽车就会利用移动的方式将传感器获得的信号转变为电信号,从而完成信号传输到ECU系统的目的,在系统接收到相关指令后,就能结合指令的具体内容完成响应。第二,电子控制器设备。其中包括冗余ECU、CPU、输出电路、输入电路等,在实际应用过程中,要利用信号转化的方式,将传感器电信号转化为数字信号,从而形成对应的响应处理工序,提高应用效果。与此同时,数字信号会汇总在CPU中,完成匹配的判定和响应处理,确保电信号分析和计算工序的合理性。值得一提的是,要结合工况完成计算标准的处理和分析,有效了解计算数值后评估统计制动力参数。与此同时,电子控制器设备还能借助输出电路将电子制动器形成的信号直接传送到控制台。第三,传感器,分为踏板传感器、制动传感器以及轮速传感器,要结合不同的形态应用对应传感器进行信号的传输和汇总,有效建立多元的信号传播模式,最大程度上提高指令接收和应用控制的综合水平。第四,电能制动设备,主要分为盘式电能制动单元和鼓式电能处理单元,在实际应用中,主要是借助运动转化的处理方式,将电机运行中形成的力矩参数直接转化到制动盘位置,提升汽车制动的实施性水平。需要注意的是,汽车轮毂结构的空间有限,应用电能制动传感器能在维持综合性能的基础上,依据科学化的尺寸设计节省空间,满足应用处理的基本需求,打造更加合理有效的制动处理结构。

2汽车电子机械制动系统应用意义

目前,在信息时代背景下,我国汽车行业取得了蓬勃发展,汽车逐渐走人了千家万户的生活中,为人们的出行带来了很大的方便,但是,随着汽车数量的不断增多,引发了一系列的环境污染问题。如全球变暖现象越来越严重、能源稀缺问题日益加剧等,为了改善这一现状,我国逐渐加大了对汽车行业的节能化、环保化发展的重视。同时,国内知名专家表示,如果将电动汽车与插电型汽车进行有效结合,可以实现新型能源汽车的生产和应用,确保汽车行业向绿色化生产发展。而电子机械制动系统的出现和应用为提高汽车的安全性和环保性发挥出重要作用。此外,电子机械制动系统凭借着自身性能良好、响应高效、控制精确等优势,在缩小制动距离和降低交通事故发生可能性,提高汽车行驶的可靠性和安全性等方面体现出非常重要的应用价值。由此可见,加强对电子机械制动系统的应用不仅实现汽车行业的节能化、环保化发展,还在提高汽车生产厂家的社会效益和经济效益,实现汽车生产厂家生产力和市场核心竞争力的全面提升等方面发挥出重要作用。

3汽车电子机械制动关键技术

3.1容错需求处理技术

伴随着科学技术的不断发展,电线电子元件能更好地取代液压元件,并且完成后备执行技术,能在优化容错效果的同时,整合资源模式,搭建更加匹配的技术控制结构。与此同时,借助电子机械制动关键技术还能建立容错系统,提高整体结构的可靠性和安全性。一方面,电子控制元件利用容错需求处理技术能快速进行后备装置的启动,维持其运行状态,及时避免电子控制元件运行异常产生的问题。另一方面,容错需求处理技术还能制定更加科学合理的容错范围,技术操作人员在引用电子机械制动系统的过程中,配合容错处理技术模块,将重要的信息予以备份处理,借助传感器信息控制确保信息和数据应用的规范性,也能最大程度上提高指令的合理性。因为电子机械制动系统支持容错处理功能,所以,在应用技术模式的过程中,要配合通信协议进一步促进技术的升级和开发应用。

3.2干扰信号处理技术

在汽车行驶过程中,干扰信号源较多,为了避免干扰信号对汽车运行安全产生影响,要结合汽车电子机械制动系统的应用规范,对不同干扰特性予以分析,利用对称型控制系统和非对称型控制系统建立匹配的应用模式。其一,对称型控制系统,能应用在具有相同性质CPU制动信号和计算程序制动信号的采集处理工作中,保证信号应用控制的最优化,并且减少信号冗余和信号干扰产生的不良作用。其二,非对称控制系统,主要是结合部件化设计分析,对不同性质的CPU进行制动信号的采集和分类,完成匹配处理模式。其三,在电子机械制动技术不断发展的基础上,技术人员要想提升软件和硬件的应用水平,就要结合汽车配置标准和具体要求,落实更加合理的制动处理模式。在抗干扰技术体系应用的同时,将导航技术、转向技术和制动处理技术融合在一起,配合算法建立部件管理模式,满足数据总线系统控制应用标准的基础上,为制动系统运行稳定性和安全性提供保障。

3.3执行器能量控制技术

对于汽车电子机械制动系统而言,要想发挥其实际作用和应用优势,更好地提升汽车运行的稳定性,就要匹配充足的电能结构,维持电能供给的合理性和及时性。结合相关数据可知,传统12V汽车电器系统已经不能满足实际应用要求,传统控制体系逐渐向着42V高性能电压系统方向发展是必然趋势。一方面,执行器能量控制技术能有效减少高电压造成的安全性能不良问题,打造更加合理且科学的应用平台,合理调控能量模块,确保资源利用率符合实际运行要求。另一方面,技术人员在进行电子机械制动关键技术应用升级的同时,还能对执行器能量控制模式进行标准的优化,匹配完整的应用标准,才能在约束机制统筹管理的同时,发挥技术优势。除此之外,制动执行器设备的标准也是控制技术应用的关键,技术人员要结合标准和优化要求选择性价比、尺寸等均满足实际标准要求的半导体,结合制动执行设备的应用环境,要求其具有耐高温特性,从而优化能量控制技术应用的效果。

结语

综上所述,随着我国科技技术的不断发展和社会经济水平的不断提高,汽车行业在发展的过程中表现出以下特征,分别是集成化特征、模块化特征和机电特征。而电子机械制动技术的出现和应用,为科学研发和应用大型集成电路提供了重要的技术支持,同时,还最大化地缩小了电子元件的生产成本,此外,在无人驾驶技术、人工智能技术的等相关技术的综合应用下,实现了对智能化电子控制系统的研发和应用,为促进提高汽车智能化控制水平,实现汽车行业的健康、可持续发展提供有力的保障。

参考文献

  1. 刘亚欧,李睿申,李晶.电子机械制动系统应用及关键技术分析[J].汽车工程师,2020(2):45-47.

  2. 杨许.汽车电子机械制动系统关键技术及前景分析[J].内燃机与配件,2019(17):45-46.