储能技术在光伏发电系统中的应用

(整期优先)网络出版时间:2022-03-16
/ 2


储能技术在光伏发电系统中的应用

王泽

大同中电光伏发电有限公司 山西省大同市 037000

摘要:在我国进入21世纪迅猛发展的新时期,近年来,由于国家的扶持、政策的导向等,光伏发电的装机容量越来越大。尤其是在我国西北地区,太阳能资源丰富,建设了许多大型光伏电站。到2030年,我国非化石能源占一次能源消费比重将达到25%左右,风电、太阳能发电总装机容量将达到12亿千瓦以上。但是,光伏发电的大量并网也造成了一些不利的影响。由于光伏发电受天气的影响较大,因此具有一定的波动与间歇性,并网之后会对电网造成一定的冲击。另外,由于一些地区负荷较少,发电量较多,太阳能消纳的矛盾凸显出来,造成了大量的弃光现象。因此,利用储能技术调节电网的稳定性,提高太阳能的消纳,减少弃光现象是当务之急。本文介绍了当前光伏发电系统中主要应用的储能技术,对储能技术如何调节电网,增加消纳能力进行了分析,并对将来更深的应用做了展望。

关键词:储能技术;光伏发电系统;消纳太阳能;改善电能质量

引言

目前,已有很多研究工作聚焦在用氢储能解决光伏弃光问题的可行性方面。通过将氢储能与压缩空气储能进行对比,分析氢储能系统的潜在机会和风险,认为利用氢储能技术解决中国西部地区弃风弃光问题,在一定程度上具有技术可行性。氢储能在综合能源系统中解决工业用户、交通运输和热电联供的问题上具有良好的应用前景和经济效益。建立太阳能光伏阵列与质子交换膜水电解直接耦合系统分析模型,为太阳能光伏−PEM水电解氢储能直接耦合技术奠定理论基础。基于氢储能的光伏能量管理的建模和仿真,为二者协调控制做了深入研究。一种含氢储能的风/光/储并网微电网混合储能系统结构,仿真结果表明,相较于传统单一的蓄电池储能系统成本高且寿命短的缺点,其在经济性和实用性方面表现出较好优势。设计的燃料电池微型热电联供系统,实现了能源的梯级利用,将可再生能源剩余电能转化为化学能进行储存,实现剩余电能的有效转化。由此可见,氢储能技术在未来电力技术和储能技术发展中占据重要的地位。

1发展太阳能储能的重要意义

(1)推进能源向低碳化和清洁性方向转型。太阳能独特的清洁性、太阳能发电过程中的低碳化都是减少发电对于环境污染的重要措施,而将太阳能转化成为电能后再储存起来更是增加了对于清洁性能源的使用率。(2)提升光伏发电和输电的效率。储能模式已经成为了未来可再生能源发展领域中不可获取的研究方向。(3)增加能源领域的经济价值。作为未来能源行业的一部分,储能最终是需要创造价值的。

2储能技术在光伏发电系统中的应用

2.1改善电能质量

由于受到天气、温度、组件倾角等因素的影响,光伏发电系统的输出功率会有所变化,造成了发电量的不稳定,使发电量预测的难度增加,对馈入电网的谐波产生影响。并且,随着太阳光照强度的变化,光伏发电功率会对电网潮流中的负荷特性产生一定的影响。光伏发电系统并入电网之后,会对电网潮流的方向、现有电网调度、规划运行方式等产生影响,加大对电网调度及控制的难度。当大量光伏发电系统接入电网后,将加剧电压波动,引起电压调节装置的频繁动作,使电网的电能质量下降。当储能接入光伏发电系统后,由相应的能量转换系统控制储能装置的充放电,可以达到对电网调峰的目的,使光伏发电系统的发电量得到有效控制。此外,储能装置的接入可以抑制电网潮流方向的改变,增加电网的稳定性,从而提升光伏发电系统接入电网之后的电能质量。

2.2推动系统的延伸和完善

光伏发电系统和风力发电系统在并入到市政电网之后,原有的电力系统运行也会就此被调整,展现出来的特征会大不相同,所以,实际运行产生故障的可能性被大大提升,而这些故障大多都是电气量方面的问题,归根于风力发电系统和光伏发电系统过大的电容量。然而,由于风力发电和光伏发电本身就具有一定的不可控性,所以故障的产生也变得更加复杂,给电网运行检测带来了极大的困难和挑战。在这种情况下,电力企业就应当针对并网系统保护方式,做出更加深入的研究,引进新的科学技术。就风力发电系统来讲,要尽可能集中核心资金与力量,让产业投资能够贴近资源丰富地带。并且,还要考虑到风力发电与电负荷中心之间的距离,针对电力系统做出进一步的优化设计,提高输电线路的稳定性和通畅性,减少风力发电机组并网中的同步振荡这一问题,延长电气设备的使用寿命和周期,打破通道断面这一限制。

2.3建设大规模的光伏发电储能系统

大规模的储能当属抽水蓄能,此种技术相当的成熟,在调峰调频中起到至关重要的作用。但是大规模储能技术主要受制于:电池性能以及成本;完善的解决方案;激励政策。电池方面,我国大规模示范的电池包含锂电池,液流全钒电池,以及在一些微网中应用铅碳电池,而其中的佼佼者就是锂电池,有权威人士曾经说过,锂电池要将成本降到1500元/kwh,循环次数达到5000次以上才有竞争力,才有可能进行大规模的储能应用,储能的示范项目也是在验证这些电池的性能,推动电池行业的发展。而笔者通过分析完善的解决方案:PCS是衔接电池与电网之间的核心环节,由电力电子器件组成,结合精确地控制系统可以与电网调度等系统相结合,肩负着能量转换的重任。包含削峰填谷,调频调峰,平滑洁净能源输出等应用模式,无一不需要通过PCS来实现。而现在PCS的拓扑结构呈现多元化,接口联通性都不佳,不利于系统的整合,所以需要出台一系列的标准来规范。PCS的结构功能的标准化,可以为形成完备的解决方案扫清硬件障碍。打个比方来说,如果一个50MW的风场,如何配置合适的容量(kW/kWh)来满足其平滑输出的功能?这需要一系列的数值统计,模拟验证等研究工作来支撑,这就体现了现在的示范项目的作用,可以通过示范研究得出基本的方法论,来为形成解决方案铺平道路。

2.4增加太阳能的消纳能力

我国西北部太阳能资源丰富,是我国太阳能资源分布的Ⅰ类地区。然而,西北部在我国又属于地广人稀的高原地带,人口密度低、数量少。同时,西北地区工业相比其他地区较为落后。因此,西北地区的负荷压力远远小于华北、华中、华南等地区。因此,在光伏渗透率较高的西北地区,由于发电量与负荷的不匹配,弃光的现象时常发生,造成巨大的损失以及消极的影响。此时,将储能系统应用到电力系统中的调峰调频等辅助服务中,通过能源管理系统的统一调度,与光伏电站的自动控制系统相结合,从而控制储能系统的充放电时间及次数等,可以在发电侧减少弃光现象,增加太阳能的消纳能力,提升能源利用率,带来良好的经济效益。

结语

综上所述,持续性推动风力发电和光伏发电的并网是合理且必要的举动,这是调节我国资源开发模式的应有之策,也是提高电力输送质量和效益的有效措施。本文通过配电系统的开发、系统的进一步完善、孤岛效应的全方位检测这几个角度,论述了风力发电和光伏发电并网的方法,充分结合了我国新能源开发的现状,具有理论上的合理性与实践上的可行性,能够作为从业人员的参考依据。在未来,企业也应当走自主科研和创新的道路,突破技术上的瓶颈。

参考文献

[1] 习近平.继往开来,开启全球应对气候变化新征程——在气候雄心峰会上的讲话[J].中华人民共和国国务院公报,2020(35):7.

[2] 杜芳.储能技术在新能源电力系统中的应用分析[J].中国高新科技,2020(20):17-18.