储能技术在光伏并网发电系统中的应用研究

(整期优先)网络出版时间:2022-03-29
/ 2

储能技术在光伏并网发电系统中的应用研究

陈文飞

青岛特锐德设计院有限公司 山东 青岛 266000

摘要:在光伏发电系统中,通过科学合理地应用储能装置,能够有效降低光伏发电系统实际运行过程中由于波动而产生的功率变化,降低功率的变化,也能够减少对电网以及负荷带来的影响,保证在离网状态下光伏系统也能够实现平稳过渡,切实提高供电系统的运行质量。然而,在实际设置过程中,储能单元的设置可以使用阀控式密封铅酸蓄电池,在结合光伏发电系统自身的运行特点分析,在不同运行状态下储能单元的自身运行优势,在此基础上建立完善的充电控制系统和放电控制系统,利用有针对性的管理措施,对其有效性进行验证。

关键词:光伏并网发电系统;储能技术;应用

引言

近年来,由于国家的扶持、政策的导向等,光伏发电的装机容量越来越大。尤其是在我国西北地区,太阳能资源丰富,建设了许多大型光伏电站。到2030年,我国非化石能源占一次能源消费比重将达到25%左右,风电、太阳能发电总装机容量将达到12亿千瓦以上。但是,光伏发电的大量并网也造成了一些不利的影响。由于光伏发电受天气的影响较大,因此具有一定的波动与间歇性,并网之后会对电网造成一定的冲击。另外,由于一些地区负荷较少,发电量较多,太阳能消纳的矛盾凸显出来,造成了大量的弃光现象。因此,利用储能技术调节电网的稳定性,提高太阳能的消纳,减少弃光现象是当务之急。本文介绍了当前光伏发电系统中主要应用的储能技术,对储能技术如何调节电网,增加消纳能力进行了分析,并对将来更深的应用做了展望。

1储能的主要类型

1.1超导储能

超导储能系统是由用超导材料制成的、放在一个低温容器中的线圈、功率调节系统和低温制冷系统等组成。能量以超导线圈中循环流动的直流电流方式储存在磁场之中。由于该储能方式直接将电能储存在磁场当中,没有能量形式的转换,因此功率密度很高,能量的充放电速度非常快,响应速度与转换效率也较高。但是由于其材料价格昂贵,维护较为复杂,且需要维持低温环境等原因,当前阶段在电力系统中应用较少。

1.2物理储能

物理储能包括压缩空气、飞轮以及抽水储能几种类型,能够以物理能的形式存储电能,在实际应用时,电力企业通常可以结合发电类型、环境现状等合理选择储能方式,实现对能源的高效应用。抽水储能虽然储能容量较高,但是该技术容易受环境限制,在环境位置不合适的情况下往往会消耗更多的应用成本,该技术在风力资源丰富的西北地区缺少应用的环境基础;飞轮储能主要是将电能存储为机械能,虽然具有较高的功率密度,但是缺少足够的能源存储量,在磁悬浮、材料相关技术的限制下,该技术难以实现大规模应用;压缩空气储能与抽水储能类似,对环境要求高,通常需要在密封良好的空间内使用,其建设快且造价低,但是在储能效率方面存在欠缺。

2储能技术在光伏并网发电系统中的应用研究

2.1储能系统DC/AC变流器的控制

通过并网时的对储能变流器的PQ控制,配合能量管理系统实现微电网与大电网的功率交换。电刚从并网运行转为离网运行前,应先将储能变流器由PQ控制转为下垂控制。为保证转换过程中不影响系统的潮流分布,需要确保转换前后储能变流器输出的电压角度、电压幅值、频率、输出功率均没有跳变。要保持变流器控制方式转换到在下垂控制时,储能变流器出口处的输出功率为P0和Q0,初始频率f0和初始电压U0与切换前的电网电气参数相同。因此对储能变流器合理有效控制也是保证微电网电能质量的必要条件。

2.2负荷响应

电力系统实际运行过程中,为了能够保证电网运行的有效性,尽量减少意外事故出现的概率,通常会对一些大功率的负荷进行自动化的调整,在负荷较高的状态下不同部分的电网通常会交替运行,这样就能够保证高峰时段电网的运行能够满足人们的实际需求,确保供电的稳定性。电力用户在使用光伏储能系统的时候,能够最大限度地保证用户电能供应的稳定性,然而,在这一过程中,相关工作人员也应该重点关注储能电站以及电网之间在负荷响应系统中的连接问题,需要保证至少有一条通信线路能够正常运行,使用这样的方式才能够最大限度地避免高功率设备,真正满足负荷的响应需求。在光伏发电系统中使用负荷响应技术,通过对不同电网的有效选择进行交替应用,才能够降低系统运行过程中出现故障的概率,利用符合响应技术能够对高功率负荷进行相应的调整,确保在临界值范围以内进行稳定工作,保证电能供应质量的前提下,还能够尽量减少调整供电量时,对电网的稳定运行产生的不利影响,保证电力系统的安全稳定运行,最大限度地保证电能供应的稳定性。

2.3改善电能质量

由于受到天气、温度、组件倾角等因素的影响,光伏发电系统的输出功率会有所变化,造成了发电量的不稳定,使发电量预测的难度增加,对馈入电网的谐波产生影响。并且,随着太阳光照强度的变化,光伏发电功率会对电网潮流中的负荷特性产生一定的影响。光伏发电系统并入电网之后,会对电网潮流的方向、现有电网调度、规划运行方式等产生影响,加大对电网调度及控制的难度。当大量光伏发电系统接入电网后,将加剧电压波动,引起电压调节装置的频繁动作,使电网的电能质量下降。当储能接入光伏发电系统后,由相应的能量转换系统控制储能装置的充放电,可以达到对电网调峰的目的,使光伏发电系统的发电量得到有效控制。此外,储能装置的接入可以抑制电网潮流方向的改变,增加电网的稳定性,从而提升光伏发电系统接入电网之后的电能质量。

2.4储能技术在风能电力系统中的应用

新能源电力系统的平稳可靠运行离不开相关技术设备或人员对瞬时功率的有效控制,相关企业需要依靠各种技术手段维持新能源电能的瞬时功率平衡性,以此来规避系统波动问题。风能电力系统控制难度极大,电力企业需要通过储能技术将原本极不稳定的能源转化为可靠输出的稳定能源。在实际应用时,传统的储能技术在风能系统中应用效果较差,通常需要依靠超导储能等稳定性极强的技术来规避风速干扰短路、联络线干扰短路等系统运行稳定,该技术还可以帮助工作人员快速定位系统故障区域,为风电场的稳定运行提供保障。

2.5微电网

对于输电系统来说,微电网并网是未来发展的主要趋势,通过微电网的使用能够从根本上提升供电的可靠性。如果微电网与整个电力系统进行分离,也就是说,微电网处于孤岛运行状态,则能够独立完成电力负荷的供电需求,在这样的情况下利用光伏发电系统组成微电网,还能够发挥其自身具备的作用,确保整个系统电能供应更加安全更加可靠。

结语

综上所述,储能技术主要包括物理储能、电化学储能以及电磁储能技术应用方式,新能源电力系统需要根据系统运行环境、技术条件、并网运行需求的多方面的因素合理选择储能技术。在太阳能、风能等电力系统中,电力企业需要充分考虑能源的不稳定特点,利用储能技术规避并网时的电网波动问题。在并网运行时,电力企业需要建立智能化的储能控制系统,结合负荷需求、分时电价、蓄电池功率、蓄电池容量等合理控制蓄电池组的充放电过程,满足电网运行需求。

参考文献

[1]全俊晓.储能技术在光伏并网发电系统中的应用分析[J].电子测试,2020(02):129-130+118.

[2]林大为.储能技术在光伏并网发电系统中的应用[J].智能城市,2019,5(20):82-83.

[3]张帅.储能技术在光伏并网发电系统中的应用[J].通信电源技术,2019,36(05):227-228.

[4]李宇光,刘强,战勇,靳志野.储能技术在光伏并网发电系统中的应用初探[J].中国高新区,2017(20):25.

[5]荣盘祥.有源电力滤波器谐波检测仿真[J].哈尔滨理工大学学报,2015,20(1):66.