户用太阳能光伏发电系统电气部分设计

(整期优先)网络出版时间:2023-02-14
/ 4

户用太阳能光伏发电系统电气部分设计

户用太阳能光伏发电系统电气部分设计

孙文虎,柴添磊

黄河鑫业有限公司 青海 西宁 810000

摘要:随着煤炭、石油和天然气等化石燃料迅速消耗,以及由此带来的能源危机与环染日益加剧,近年来世界各国都在积极寻找和开发新的、清洁、安全可靠的可再生能源。太阳能具有取之不尽、用之不竭和清洁安全等特点,是理想的可再生能源。20世纪70年代后,太阳能光伏发电在世界范围内受到高度重视并取得了长足进展。太阳能光伏发电技术作为太阳能利用的一个重要组成部分,并被认为是二十一世纪最具发展潜力的一种发电方式。太阳能光伏发电系统的研究对于缓解能源危机、减少环境污染以及减小温室效应具有重要的意义。

太阳能是最普遍的自然资源,也是取之不尽可再生资源。为了解决边远的农牧地区、偏僻的山区、孤立等的岛屿地方人们的日常生活、生产用电的需要、改善人们的生活水平,进行了离网型(独立)家用光伏发电系统的设计。根据当地的气象、环境状况及具体用电情况,给出了系统的设计方法及施工要求,包括控制器、蓄电池组组件、逆变器、离网型太阳能系统的设计等。安装运行以来,系统工作稳定正常,验证了这集的合理性、正确性。

关键词:太阳能光伏发电系统;最大功率点跟踪;离网光伏发电

1 太阳能离网型光伏发电系统基本组成和特性

1.1  太阳能离网型光伏发电系统概述

一般来说,太阳能离网型光伏发电系统主要包括太阳能电池阵列、控制器、蓄电池组和逆变器等部分。太阳能电池阵列是整个系统能源的来源,它把照射到其表面的太阳能转化为电能;控制器是整个系统的核心部件之一,其运行状态决定着系统的运行状态,系统在控制器的管理下运行;蓄电池的功能在于储存太阳能电池阵列受光照时所发出的电能并在无光照时向负载供电;逆变器是将直流电变换为交流电的设备,由于太阳能电池阵列和蓄电池发出的是直流电,因此当系统向交流负载供电时,逆变器是不可缺少的。常用的太阳能离网型光伏发电系统如图1.1所示。

图1.1离网型光伏发电系统图

1.1.1  太阳能电池原理

在太阳能光伏发电系统中,实现光电转换的最小单元是太阳能电池单体。太阳能电池单体实际上是一个PN结,PN结在光照下会产生电动势,这种效应称为光生伏特效应。当PN结处于平衡状态时,PN结处有一个耗尽层,耗尽层中存在着势垒电场,电场方向由N区指向P区。当PN结受到光照时,硅原子受光激发而产生电子空穴对,在势垒电场的作用下,空穴向P区移动,电子向N区移动,从而P区就有过剩的空穴,N区就有过剩的电子,这样便在PN结附近形成与势垒电场方向相反的光生电动势。光生电动势的一部分抵消势垒电场,另一部分使P区带正电,N区带负电,从而在P区与N区之间产生光生伏特效应。若在太阳能电池单体两侧引出电极并接上负载,则负载就有“光生电流”流过,从而获得功率输出。

1.1.2  太阳能电池输出特性

(一)标准测试条件下太阳能电池的输出特性

一般的太阳能电池组件生产商均提供上述标准测试条件下的五个参数。当太阳能电池输出电压比较小时,随着电压的变化,输出电流的变化很小,太阳能电池近似为一恒流源,当太阳能电池输出电压超过一定的临界值时,太阳能电池输出电流急剧下降,太阳能电池可近似为一恒压源。太阳能电池的输出特性是非线性的,既非恒流源也非恒压源(在最大功率点左侧为近似恒流源段,在最大功率点右侧为近似恒压源段),且在一定的电池温度和日照强度下有唯一的最大输出功率点。

(二)温度和日照强度对太阳能电池输出特性的影响

太阳能电池的I-V特性曲线与日照强度和电池温度有关,分别为不同日照光强和不同电池温度时,太阳能电池的输出特性曲线。当温度一定时,太阳能电池短路电流Isc随日照强度的增加而增加,并与日照强度成正比,太阳能电池开路电压Uo随日照强度的增加稍有增加,但增加很小,当日照强度一定时,电池温度升高,太阳能电池开路电压Uo降低,而太阳能电池的短路电流Isc有轻微的增加。

1.2  铅酸蓄电池

储能是光伏发电系统的重要组成部分,尤其对于独立光伏发电系统而言,储能环节更是不可缺少的组成部分。储能系统的好坏直接影响到光伏发电系统的性能在实际的光伏发电系统中,储能部分又是最易受损、最易消耗的部分。所以获得最佳的储能系统成为光伏系统设计的重要组成部分。目前光伏发电系统中通常使用蓄电池实现储能,常用蓄电池属于电化学电池。蓄电池在充电时把电能转化为化学能储存起来,放电时把储存的化学能转化为电能提供给负载使用。

1.2.1  铅酸蓄电池充电控制方法

在太阳能独立光伏发电系统中,对铅酸蓄电池使用的充电控制方法直接影响到系统的性能。充电控制方法的优劣影响到铅酸蓄电池的荷电量的大小,同时也关系到铅酸蓄电池的使用寿命。而电荷量的大小决定着太阳能独立光伏发电系统向负载供电的能力、铅酸蓄电池的使用寿命关系到系统的成本、造价以及系统的使用寿命,因此选择合理的充电控制方法是提高太阳能独立光伏发电系统性能的有效手段。目前铅酸蓄电池常用的充电控制包括恒流充电、恒压充电、两阶段和三阶段充电等方法,

2  太阳能电池最大功率点跟踪

目前,太阳能电池阵列在太阳能光伏发电系统造价中占很大比重,而且太阳能电池的转化效率本身就不高,因此有必要研究提高太阳能电池利用效率的方法,以降低系统单位价格的成本,促进太阳能光伏发电系统的应用推广。太阳能电池最大功率点跟踪(Maximum Power Point Tracking ,简称MPPT)是其中的途径之一,它能最大程度的利用太阳能电池转化所得的电能。

2.1  太阳能电池最大功率点跟踪原理

由第一章可知,太阳能电池的输出特性受电池温度和日照强度等因素的影响,电池温度主要影响太阳能电池的开路电压,日照强度主要影响太阳能电池的短路电流。在一定日照强度和温度下,太阳能电池有唯一的最大输出功率点,太阳能电池只有工作在最大功率点才能使其输出的功率最大。

2.2  太阳能电池最大功率点跟踪方法

目前使用的太阳能电池最大功率点跟踪方法主要有恒电压法、观察扰动法、电导增量法以及其它的一些跟踪方法。

1. 恒电压法(简称CVT)

温度一定时,在不同的日照强度下,太阳能电池阵列输出曲线的最大功率点基本是分布在一条垂直线的附近,因此只要保持太阳能电池阵列输出电压为常数且等于某一日照强度下太阳能电池阵列最大功率点的电压,就可以大致保证在该温度下太阳能电池阵列输出最大功率。

2. 扰动观察法

扰动观察法的原理是:在每个控制周期用较小的步长改变太阳能电池阵列的输出,改变的步长是一定的,方向可以是增加也可以是减少,控制对象可以是太阳能电池阵列的输出电压或电流,这一过程称为“扰动”;然后,通过比较干扰周期前后太阳能电池阵列的输出功率,如果输出功率增加,那么继续按照上一周期的方向继续“干扰”过程,如果检测到输出功率减少,则改变“干扰”的方向。

3. 增量电导法

为了解决扰动观察法导致的功率损失问题,K.H.Hussein在1995年提出了增量电导法。由太阳能电池阵列输出电气特性知,太阳能电池阵列的输出功率-电压(P-V)曲线是一个单峰曲线,在最大功率点处,功率对电压的导数为零。

3  太阳能离网型光伏发电系统主电路设计

3.1  系统设计总框图

本设计的总体方框图为:

                    图3.1太阳能离网型光伏发电系统总框图

3.2  太阳能离网型光伏发电系统常用DC/DC变换器及其特点

到目前为止,在太阳能光伏发电系统中使用的DC/DC变换电路主要有BUCK电路,BOOST电路,BUCKK-BOOSTT电路以及CUK电路。它们的电路拓扑分别如下图3.2 (a)-(d)所示。

a. BUCK电路拓扑图               b. BOOST电路拓扑图

c. BUCK-BOOST电路拓扑图             d. CUK电路拓扑图

        图3.2太阳能光伏发电系统中常用的DC/DC变换电路拓扑图

3.2.1  BUCK电路

BUCK电路输入端工作在断续状态,如果直接将BUCK电路接在太阳能电池阵列上将造成太阳能电池阵列输出电流不连续,太阳能电池阵列不能工作于最佳工作状态,因此需要在太阳能电池阵列输出端并联储能电容以保证太阳能电池阵列输出电流的连续。当功率器件关断时,太阳能电池阵列对储能电容充电,使太阳能电池阵列始终处于发电状态。通过调节BUCK电路的占空比D实现调节太阳能电池阵列输出平均功率的目的,从而实现对太阳能电池阵列的MPPT功能。

用BUCK电路实现太阳能电池阵列最大功率点跟踪时,必须在BUCK电路并联一个储能电容,在大功率情况下,由于储能电容始终处于大电流充放电状态,对其可靠工作不利;同时由于储能电容通常为电解电容,使BUCK电路无法工作在较高的频率下,使得BUCK电路装置的体积和重量增加;而且BUCK电路只能用于降压变换。

用BUCK电路实现太阳能电池阵列最大功率点跟踪的优点是结构简单,控制易于实现,功率开关管输入电流小,线路损耗小,使得BUCK电路装置转化效率较高。

3.2.2  B00ST电路

BOOST电路以电感电流源方式向负载放电实现负载电压升高的目的。与BUCK电路相比,BOOST电路的电感在电路的输入端,因此只要输入电感足够大,BOOST电路可以始终工作于输入电流连续的状态下,电感上的纹波电流可以小到接近平滑的直流电流,因此在光伏发电系统应用中,只需在BOOST电路并联容量较小的无感电容甚至可以不加电容,如图4.6,这样就可避免加电容带来的种种弊端。同时BOOST结构也非常简单,并且功率开关管一端接地,使得开关管驱动电路设计更为简单。

BOOST电路的不足之处在于其输入端电压较低,在同样的功率下,输入电流较大,因而电路损耗较大,与BUCK电路,BOOST电路转化效率略低一些;而且BOOST电路只能进行升压变换。

3.3  带双向变换器的太阳能离网型光伏发电系统

图3.3所示为本文研究所用离网型光伏发电系统结构图,该独立式光伏发电系统主电路包含以下五个部分:太阳能电池阵列,BOOST变换器和双向BUCK-BOOST变换器,蓄电池组以及负载。

图3.3带双向变换器的独立光伏发电系统

太阳能电池阵列是整个系统能量的来源,本系统所使用的太阳能电池阵列以七块无锡尚德太阳能电力有限公司生产的STP155S-24/Ab 型单晶硅太阳能电池并联而成,总功率为1KW为例。STP155S-24/Ab型单晶硅太阳能电池组件参数如表3.1所示:

                 表3.1 太阳能电池组件参数

最大工作电压Vm

最大工作电流Im

短路电流Isc

开路电压Voc

功率

34.4V

4.51A

4.9A

43.2v

153W

3.3.1  BOOST电路设计

系统中BOOST电路设计开关管的开关频率fs=20kHz,输入直流电压Vin∈[25V,45V],额定输入直流电压Vin=34V,输出直流电压Vo=48V,输出电流额定电流I0=22.3A,电感电流工作在电流连续模式(Current Continuous Mode),效率η=0.95。

(一)滤波电感的计算

(3-1)

                   (3-2)

D=1-Vin/V0          (3-3)

式中:D为开关管的占空比,fs为开关管开关频率。

由(4-2)和(4-3)可得:

(3-4)

(3-5)

取△iL1=0.2IL1,计算可得L1min,=66.5uh

(二)滤波电容的估算

(3-6)

取△Vo=4.8,由上述参数可得:

                 (3-7)

为了使输出电压纹波小于4.8V,滤波电容必须大于110.5uF,可取120uF,滤波电容的耐压值不应小于48x1.5=72V,因此滤波电容可取120uF/l00V。

(三)功率开关管的选取

通过功率开关管的最大电流与通过电感的最大电流相等,为45A,功率开关管承受的最大电压为2Vin=2×45=90V。考虑到功率开关管电压和电流的设计裕量,开关管的额定电压应为珠的1.5倍,额定电流应大于开关管导通时流过的峰值电流的2倍。BOOST电路中开关管选取Infineon公司的IPBO42N10N3G MOSFET管,其额定耐压值VDS=l00V,额定电流ID=100A,导通电阻RDS(ON)=4.2mΩ

(四)二极管的选取

通过二极管的最大电流与通过电感的最大电流相等,为45A,功率开关管承受的最大反向电压为Vomax=50.4v。考虑到二极管电压和电流的设计裕量,开关管的额定电压应为Vin的1.5倍,额定电流应大于开关管导通时流过的峰值电流的2倍。

BOOST电路中二极管选取Infineon公司的D255N二极管,其最大反向耐压VRRM=600V,最大正向电流IF=400A,反向恢复时间最长131ns。

3.3.2  铅酸蓄电池组设计

在本系统中铅酸蓄电池组接在双向BUCK-BOOST变换器上充当负载。当铅酸蓄电池组直接接在BOOST电路上充当负载时,系统为铅酸蓄电池充电以储存能量,当无太阳光照射时,铅酸蓄电池可通过双向BUCK-BOOST变换器向负载供电。本系统中铅酸蓄电池选择电压24V、容量为100AH的蓄电池组。

3.4  双向BUCK-B00ST变换器

3.4.1  双向BUCK-B00ST变换器运行原理

双向BUCK-BOOST变换器是在BUCK电路中的续流二极管替换为功率MOSFET管而得到的,其电路结构如图3.4所示。为实现能量的双向自由流动,Q2和Q3互补PWM工作,即Q2导通时,Q3截止,Q3导通时,Q2截止。为了防止Q2,Q3同时导通,两者之间有死区时间,即Q2关断后经死区时间td后才允许Q3导通,反之亦然。

3.4.2双向BUCK-BOOST变换器参数设计

系统中设计双向BUCK-BOOST变换器的功率开关管的开关频率也为Fs=20kHz,双向BUCK-BOOST变换器按BUCK变换器设计:输入额定直流电压为Vin=48V,输入电压波动△Vo=4.8v;输出直流电压Vo=24v,输出电压纹波为2V;输出额定电流I=45A。

(一)滤波电感的估算

                        (4-8)

1


通过二极管的最大电流与通过电感的最大电流相等,为45A,功率开关管承受的最大反向电压为Vomax=50.4v。考虑到二极管电压和电流的设计裕量,开关管的额定电压应为Vin的1.5倍,额定电流应大于开关管导通时流过的峰值电流的2倍。

BOOST电路中二极管选取Infineon公司的D255N二极管,其最大反向耐压VRRM=600V,最大正向电流IF=400A,反向恢复时间最长131ns。

3.3.2  铅酸蓄电池组设计

在本系统中铅酸蓄电池组接在双向BUCK-BOOST变换器上充当负载。当铅酸蓄电池组直接接在BOOST电路上充当负载时,系统为铅酸蓄电池充电以储存能量,当无太阳光照射时,铅酸蓄电池可通过双向BUCK-BOOST变换器向负载供电。本系统中铅酸蓄电池选择电压24V、容量为100AH的蓄电池组。

3.4  双向BUCK-B00ST变换器

3.4.1  双向BUCK-B00ST变换器运行原理

双向BUCK-BOOST变换器是在BUCK电路中的续流二极管替换为功率MOSFET管而得到的,其电路结构如图3.4所示。为实现能量的双向自由流动,Q2和Q3互补PWM工作,即Q2导通时,Q3截止,Q3导通时,Q2截止。为了防止Q2,Q3同时导通,两者之间有死区时间,即Q2关断后经死区时间td后才允许Q3导通,反之亦然。

3.4.2双向BUCK-BOOST变换器参数设计

系统中设计双向BUCK-BOOST变换器的功率开关管的开关频率也为Fs=20kHz,双向BUCK-BOOST变换器按BUCK变换器设计:输入额定直流电压为Vin=48V,输入电压波动△Vo=4.8v;输出直流电压Vo=24v,输出电压纹波为2V;输出额定电流I=45A。

(一)滤波电感的估算

                        (4-8)

                 (4-9)

                (4-10)

                         (4-11)

式中:D为开关管的占空比,fs为开关管开关周期。取输出电流纹波△i0=3A。可得:

                (4-12)

            (4-13)

                   (4-14)

取L2=210uh。

(二)滤波电容的设计

由于本系统中双向BUCK-BOOST变换器的负载为铅酸蓄电池,而铅酸蓄电池本身就相当于一个大电容,因此本双向BUCK-BOOST变换器输出端可以不用滤波电容;另外,省去滤波电容还可以减少由于铅酸蓄电池给滤波电容充电而导致的容量损失。而且省去滤波电容,减少了系统成本,缩小系统的体积,从而简化了电路。

(三)功率开关管的选取

双向BUCK-BOOST变换器中,功率开关管Q2和Q3承受的最大电压均为Vin=50.4V,功率开关管Q2和Q3的最大工作电流与流过滤波电感的最大电流相同,即IQ2max=IQ3max=IL2max=45A。考虑到功率开关管电压和电流的设计裕量,可选择开关管的容许电压为100v,容许电流为50A。双向BUCK-BOOST变换器电路中开关管选取Infineon公司的IPBO42CN10N3G MOSFET管,其额定耐压值VDS=100V,额定电流ID=100A,导通电阻RDS(ON)=4.2mΩ.

3.5  逆变电路

图3.4逆变电路

直流-交流(DC/AC)变换器,也称逆变器。其功能是将直流电变为固定频率和电压或可调频率和可调电压的交流电,供负载使用。

逆变电路的分类方法有很多种,本文采用双极性SPWM单相逆变电路。太阳能光伏阵列产生的电压,经过一个BOOST电路升压,通过调节Q5端得占空比来调节升压后电压的大小。再经过双极性SPWM逆变电路,将直流电转换为交流电供负载使用

双极性SPWM调制的特点是:三角载波有正负极性,同样再载波和调制波的交点处产生驱动信号。但是T6、T9和T7、T8的驱动脉冲互补。在T6、T9导通时,T7、T8截止;在T7、T8导通时,T6、T9截止。因此逆变器交流输出电压在半周期中也有正负极变化,故称双极性调制。在输出交流的正半周。正脉冲宽度大于负脉冲;在输出交流的负半周,负脉冲宽度大于正脉冲,且脉冲狂度随调制波变化,使输出交流电压按正弦规律变化。改变调制波的幅值,则改变了调制正弦波与三角波的交点位置,可以调节矩形脉冲宽度,从而改变交流电压的大小。改变调制正弦波的频率。使输出交流电的频率也随之变化,因此调节调制波的幅值和频率就可以调节交流输出电压的大小和频率。


结束语:

随着煤炭、石油和天然气等化石燃料迅速消耗,以及由此带来的能源危机与环境污染日益加剧,近年来世界各国都在积极寻找和开发新的、清洁、安全可靠的可再生能源。太阳能具有取之不尽、用之不竭和清洁安全等特点,是理想的可再生能源。20世纪70年代后,太阳能光伏发电在世界范围内受到高度重视并取得了长足进展。太阳能光伏发电技术作为太阳能利用的一个重要组成部分,并被认为是二十一世纪最具发展潜力的一种发电方式。太阳能光伏发电系统的研究对于缓解能源危机、减少环境污染以及减小温室效应具有重要的意义。

本文主要研究功率为1KW的离网型光伏发电系统,主要内容有:

(1)介绍了太阳能光伏发电的系统的基本组成和特性,并详细说明了太阳能电池的原理,特性以及太阳能电池工程模型。

(2)太阳能电池最大功率跟踪的原理以及一些常用的方法。

(3)通过对目前太阳能离网型光伏发电系统常用DC/DC拓扑结构的研究,总结了各种DC心C拓扑结构的优缺点。本文重点研究一种带有双向变换器功能的太阳能独立光伏发电系统,对该系统主电路的参数进行了设计计算。

1


1