高压试验及电力系统的高压影响

(整期优先)网络出版时间:2023-07-11
/ 2

高压试验及电力系统的高压影响

张航

内蒙古电力(集团)有限责任公司乌兰察布供电分公司 内蒙古乌兰察布,012000

摘要:为保证电力系统的安全稳定运行,满足社会群体对电力资源的经济性和安全性需求,应当通过高压试验的方式,对电气设备的使用性能进行全面试验检查,确保电气设备的运行的安全性。本文对电气设备高压试验进行分析,并探讨电力系统的高压影响,并提出相应防护措施,仅供相关人员参考。

关键词:高压试验;电力系统;高压影响;防护措施

引言  电气设备高压试验

就电力系统运行的实际情况来看,积极采取有效措施提高电气设备的安全性,能够为电网系统的安全使用提供可靠的基础。现代社会经济发展形式下,社会群体对电力资源的需求不断提升,此种情况下,电网系统的容量不断增大,电力系统运行负荷加重。为保证电力系统的安全稳定运行,降低电力系统故障发生率,提高电力工程建设的综合效益,应当加大力度做好电气设备的高压试验工作,确保高压电气设备的使用性能满足电力系统的运行需求。

1、电气设备高压试验

所谓电气设备高压试验,是指依据电力工程相关规范,在高压条件下检测电气设备的运行情况及使用性能,进而对电气设备运行状态进行高效的诊断分析。科学化的电气设备高压试验的开展,有助于改善电气设备自身结构系统的利用率,优化电气设备的使用性能,从而维护电力系统的安全稳定运行。

1.1高压试验主要针对高压电气设备材料、型号、使用性能以及相关的技术标准来进行试验分析,从而得出相应的检测结果,来对电气设备的运行情况和结构质量进行判断。如果出现不合格的电气设备一律不得进行使用。

1.2在对电力系统进行大范围的维修以后,技术人员也可以采用高压试验的方法,来对变压器等高压电气设备的绝缘性进行试验检查,检测在维修的过程中是否对高压电气设备的绝缘性能造成了一定的影响,从而采用相应的补救措施来对其进行处理。

1.3采用高压试验的方法来对电气设备的运行状态进行检测和判断,我们也可以采用预防性的技术手段,来对电气设备进行定期的质量检测。

2、试验的分类

由此可见,电气设备的高压试验在电力系统运行的过程中有着十分重要的意义,它有效的提高了电气设备的安全性和稳定性,目前,我们在对其高压试验方法进行采用的过程中,我们可以根据其试验目的的不同,将其分成多个不同类型的实验方法,其中我们可以将电气设备的绝缘试验分成绝缘特性试验和耐压试验两大类别。

2.1绝缘特性试验,绝缘特性试验是指在较低的电压下或是用其它不会损伤绝缘的办法来测量绝缘的各种特性,从而判断绝缘内部有无缺陷。例如测量绝缘电阻、测量绝缘的介质损耗角正切值、绝缘油的物化特性、油中的气体色谱分析、空载试验、局部放电的超声波测量。实践证明,此类方法是有效的,但尚不能仅靠它来判断绝缘的耐压等级。

2.2绝缘耐压试验,工频耐压试验、感应耐压试验、操作波试验、冲击试验等均属破坏性试验,它能发现那些危险性较大的集中性缺陷,确保绝缘有一定的等级。缺点是可能会在耐压试验时给绝缘造成一定的损伤。耐压试验必须在非破坏性试验之后进行,加果非破坏性试验已经表明绝缘存在不正常情况,则必须查明原因并加以消除后再进行耐压试验,以避免不应有的击穿和经济损失。

3.高压试验对电力系统的高压影响分析

电力企业在供电网络建设中的防雷工作是极为艰巨的,高压电气设备在运行中一旦损坏,则会导致整个供电系统无法正常进行供电,会给社会生产领域、电力企业自身造成巨大的经济损失。因此,在变电站设计过程中必须要注重电力系统的安全稳定,确保电力系统供电过程中的安全性、稳定性以及经济性。

3.1高压防雷

电力系统中的电离装置主要通过裸导线架空线路的方式进行电力输送,而架空线路一般设置在距离地面6~18m左右的空间范围内,如果在雷雨天气因雷电入侵波产生的雷电过压,会导致线路和高压电气设备在运行中出现绝缘击穿的事件,这会对电力系统产生极大破坏。电力系统在建设中采用高压防雷技术可以有效解决这一问题,其通过给线路或高压电气设备人为的制造绝缘薄弱点即间隙装置,间隙装置的击穿电压比线路或高压电气设备的雷电冲击绝缘水平相对较低,所以在电力系统正常运行电压下的间隙装置处于隔离绝缘状态,当雷电发生时过于强大的雷电过压会使间隙装置击穿,从而通过接地保护作用来避免电力系统线路或高压电气设备受到损毁。

3.2间隙保护技术

间隙保护技术就是电力系统变压器中性点间隙接地保护装置,其线路大体上是由两极由角形棒组成,一极固定在绝缘件上连接带点导线而另一极直接进行接地,当雷电过压将间隙击穿后会在角形棒间上升拉长,当电弧电流变小的时候便可以自行息弧。间隙保护技术在实际应用中最大的特点就是结构简单、运行维护量小,但是该技术在应用中一旦电弧电流大于几十安,则会导致其无法自行进行息弧,而且间隙动作过程中会产生一定的截波,会在一定程度上影响到变压器自身的绝缘性能。

3.3避雷器保护技术

避雷器是电力系统中进行雷电流泄放通道的技术,其本质上也是一种等电位连接体,在电力系统线路上并联对地的进行安装,避雷器在电力系统正常运行下处于高阻抗状态,而当雷电发生时避雷器则会将雷电电流迅速泄入到大地中,从而使大地、高压电气设备、线路等电力系统设施处在等电位上,从而避免电力系统受到强电势差的损害。避雷器技术在实际应用中也存在较多缺陷,由于避雷器的选用会受到电力系统安装地点等因素限制,则会导致其在受到雷击过程中的能量相对较大,依靠单一的避雷器很难将雷电流全部导入到大地中,这样便会

导致避雷器在应用中容易发生损毁。

4、电力系统开展高压试验的注意事项

4.1电力系统的高压试验电压的控制

电力系统的高压试验中,电压和试验的精度有着很强的相关性,随着电压的升高,电力系统中的能耗因数会随之减少。尤其是在高电压状态下,电容器、线缆的铰接处氧化层会发生熔化导致电阻的阻值降低,最后促进电力系统的高压试验精度提高。在电力系统的高压试验工作开展前,需要选择恰当的电源,从而对电压试验有效的控制,注重电压对于电力系统氧化层的熔化作用,从而提升电力系统的高压试验精确度。

4.2电力系统的高压试验环境的控制

在电力系统进行高压试验的过程中,需要对环境进行严格控制。所在环境中的温度、湿度等会对电力系统的高压试验准确性产生直接的影响。为了避免电力系统高压试验的环境存在湿度过大的问题,避免水汽影响电力系统以及电力设备中的电阻能耗和介质,必须对环境进行严格的控制。为了避免电力系统的高压试验环境存在高温现象,需要控制环境温度,保证其波动范围不会影响电力系统的电阻。

4.3电力系统的高压试验引线电阻的控制

在电力系统高压试验的过程中,引线电阻会对其结果造成严重的影响,导致测量的结果不合格。产生这一现象产生的原因主要环境污染日益恶劣。因此,一定要对氧化层的绝缘电阻值进行测量,检查其是否影响测量结果,以避免引线导致电流发生泄露,以保证测量结果真实可靠。

4.4电力系统的高压试验电磁干扰的控制

在电力系统中,高压试验过程中的外部电磁场干扰也会对被测设备产生一定的影响,导致高压试验结果不准确。为了有效的控制电磁的干扰,可对电力系统的高压试验数据进行纵向分析,并将所得数据和历史数据进行分析与对比,综合外部因素并考虑发展趋向,最终对电力系统高压试验的基本状况进行科学的判断。在电力设备的运行过程中,需要进行介质损耗试验,此时需保证被测设备处于停电状态,但是其周边设备可处于带电作业状态。但是这些设备的电磁场一定会对试验设备造成干扰,导致介质损耗因数受到影响,所得数据的准确性无法保证。

结语

总之,电力系统高压试验工作所涉及的内容十分广泛,在实际工程中操作步骤也十分繁琐,安全且高效的提供电力可以说是社会及经济发展的基础,为了能够使其更好的发展,应当全力做好电力系统相关工作,确保电力企业能够稳定发展。

参考文献:

[1]赵晓龙,郭跃男,兰森.高压试验对电力系统高压的影响分析[J].中国新技术新产品,2016,23.

[2]李佳辰.电力系统高压电气试验技术问题的重要性解析[J].科技与创新,2016,23:159.

[3]钱小锋.电力系统高压试验过程及注意事项分析[J].低碳世界,2017,11:97-98.