脓毒症相关的凝血功能障碍的研究进展

(整期优先)网络出版时间:2024-07-16
/ 7

脓毒症相关的凝血功能障碍的研究进展

李婷

中国人民解放军95829部队医院    湖北武汉  430012

【摘要】:脓毒症是机体对于感染反应失调而引起器官功能障碍的综合征,严重时可能危及生命。脓毒症相关的凝血功能障碍(SIC)表现为凝血系统的异常激活伴随着血液高凝、抗凝抑制及微循环内血栓形成,凝血因子大量消耗,弥散性血管内凝血(DIC)风险增加。早期识别SIC高风险患者,使用恰当的抗凝策略有助于减少器官衰竭、DIC发生风险、降低患者死亡率。通过回顾相关文献,对脓毒症相关的凝血功能异常相关病理机制、评分系统及治疗措施的研究进展进行综述。

      【关键词】脓毒症;脓毒症相关的凝血功能障碍;弥散内血管内凝血;抗凝治疗;

AbstractSepsis is a syndrome of organ dysfunction caused by the body's aberrant response to infection, which can be life-threatening in severe cases. Sepsis-induced coagulopathy (SIC) is characterized by abnormal activation of the coagulation system accompanied by hypercoagulation, inhibition of anticoagulation, microcirculatory thrombosis, severe depletion of coagulation factors, and an increased risk of disseminated intravascular coagulation (DIC). Early identification of SIC patients and implementation of appropriate anticoagulation strategies can help mitigate the risk of organ failure, DIC, and mortality. This review aims to summarize the current research progress on the pathogenesis, scoring systems, and treatment measures for sepsis-related coagulation dysfunction.

【Key words】Sepsis; Sepsis-induced coagulopathy (SIC); Disseminated intravascular coagulation (DIC);  Anticoagulation

一、流行病学

脓毒症(sepsis)是机体因免疫失调引起的一种综合征,常伴有多器官功能异常甚至衰竭。脓毒症在危重症患者中十分常见,作为主要病因或合并症,其发病率高、致死率高、医疗费用昂贵且个体之间存在较大的差异性,是重症监护病房(ICU)患者的常见死因之一[1]。脓毒症相关的凝血功能异常早期阶段被成为SIC(sepsis-induced coagulopathy),有研究表明50%-75%脓毒症患者合并凝血功能障碍,晚期阶段35%患者最终发生弥散性血管内凝血(DIC,disseminated intravascular coagulation)[2]。凝血功能异常严重程度与患者预后密切相关[3]。脓毒症并发DIC患者死亡率高达28%-43%[4],早期发现和治疗SIC对于脓毒症的治疗具有重要意义。

二、脓毒症中凝血功能障碍的机制

脓毒症相关的凝血功能障碍(SIC)形成的机制包括凝血系统过度激活和炎症反应[5]。免疫细胞释放炎症因子、病原相关分子模式(Pathogen-associated molecular patterns,PAMPs)、组织因子(tissue factor,TF)导致血液向促凝血状态转化以及血管内皮损伤、纤溶抑制[6]等。病原刺激单核细胞或巨噬细胞分泌的炎症因子和微囊泡可以激活炎症反应和凝血系统[7]。炎症因子可以通过刺激中性粒细胞释放细胞外诱捕网(neutrophil extracellular traps,NETs)导致内皮细胞损伤[8]。激活的中性粒细胞同时释放PAMPs和炎性介质,进而刺激补体系统激活形成膜攻击复合物(membrane attack component,MAC)加重内皮细胞损伤,而组织因子激活外源和内源凝血途径进而导致凝血酶的形成从而导致微循环血栓形成,血栓形成的过程进一步刺激炎症反应和凝血系统激活,进而导致凝血功能障碍

[9]。血栓形成同促使机体产生过量的纤溶酶原激活物抑制剂-1(plasminogen activator inhibitor-1,PAI-1),使纤溶系统处于抑制状态加重凝血功能异常[10]。SIC在发病早期治疗效果最佳,随着凝血因子和血小板大量消耗,凝血功能障碍情况会逐渐加重,SIC开始向DIC转变,一旦合并出血并发症,治疗难度将大大增加[11]

三、脓毒症相关凝血功障碍的早期识别

准确识别SIC和脓毒症导致的DIC对于医生治疗方案调整至关重要,虽然因为长期卧床会导致深静脉血栓形成及潜在脏器栓塞风险增加等原因,许多ICU患者会常规接受抗凝治疗,不过这种治疗是否适合全体脓毒症患者尚存争议。有研究表明早期血栓形成是一种免疫过程,是机体通过牺牲组织循环阻断感染病原传播的一种方式,过早进行抗凝治疗虽然降低血栓风险却影响NETs捕获病原体,导致其扩散。所以对不合并凝血功能障碍患者,抗凝治疗存在争议,有人认为常规进行抗凝并不仅不会使患者获益 ,甚至带来额外的出血风险。 可见选择恰当的抗凝时机,关键在于早期准确识别SIC[12]

国际血栓与止血学会(International Society on Thrombosis and Haemostasis,ISTH)最早提出DIC概念和ISTH显性DIC评分系统,一直作为DIC诊断的金标准。不过当脓毒症患者进展至DIC阶段其治疗手段和治疗效果都比较有限。如果能识别DIC早期阶段将有助于提升治疗效果[13]。2017年ISTH提出了SIC评分系统,包括血小板计数、国际标准化比值(INR)和脓毒症器官衰竭评分(Sepsis Organ Failure Assessment,SOFA)。评分≥4分科诊断SIC[14]

此后人们逐渐意识到SIC和脓毒症患者的DIC可能是一个连续的过程,基于这种观点2019年ISTH推荐对于SIC评分≥4分患者进一步使用显性DIC评分系统,如果得分≥5分,可诊断为脓毒症引起的DIC,此类病人抗凝治疗的最佳时机是SIC评分达到4分时[15]

表1.SIC评分系统和ISTH显性DIC评分系统对比

分值

SIC

显性DIC

血小板计数(×109/L)

2

<100

<50

1

≥100,<150

≥50,<100

FDP/D-二聚体

3

-

显著升高

2

-

中等升高

1

-

-

PT/INR

2

>1.4

≥6s

1

>1.2,≤1.4

≥3s,≤6s

纤维蛋白原FIB(g/L)

1

-

<1

SOFA 评分

≥2

2

-

1

1

-

诊断标准

≥4分

≥5分

SOFA序贯器官衰竭评分:包括呼吸衰竭、循环衰竭、肝功能衰竭和肾功能衰竭;SIC评分:脓毒症相关凝血功能障碍评分;ISTH显性DIC评分:国际血栓与止血协会显性DIC评分;FDP 纤维蛋白降解产物;PT凝血酶原时间;INR国际标准化比值;FIB纤维蛋白原;

四、脓毒症相关的凝血功能障碍的治疗

       目前脓毒症相关的指南公认及时有效的抗感染治疗是治疗脓毒症的基石,经验性广谱抗菌治疗适用于大部分此类患者。2021年版拯救脓毒症运动(Surviving Sepsis Campaign,SSC)认为如果感染源可以清除,应在条件允许时立即清除,比如更换感染的静脉置管。此外还将液体复苏、血流动力学管理、机械通气等也被认为治疗脓毒症的关键措施[16]

对于脓毒症相关的凝血功能障碍,其治疗方法主要以药物治疗为主,必要时可能需要成分输血补充凝血因子或血浆置换。治疗SIC的常用药物主要包括以下几类:

1. 抗凝血酶(Antithrombin,AT)

抗凝血酶(AT)是丝氨酸蛋白酶抑制剂,可以抑制凝血酶及凝血因子80%左右活性。作为人体内最主要的抗凝物质,其下降水平可以反应脓毒症病情严重程度,Iba等研究了不同剂量AT治疗的安全性和有效性,结果发现1500IU/d7与3000IU/d组患者28天生存率为65.2% vs 74.7%,多元回归分析显示高剂量AT治疗与生存率提高相关[17]。一项研究纳入2314例SIC患者,与安慰剂(人血白蛋白)对比, ATIII治疗未能改善患者28天生存率(38.9% vs 38.7%)且增加出血风险,可见对于不伴有凝血功能紊乱的脓毒症患者,抗凝血酶与肝素联用无法起到改善短期预后的效果[18]。Tagami等通过回顾9075例肺炎引起SIC患者资料发现,AT治疗可以使患者28天死亡率降低9.9%,回归分析显示AT治疗可以降低死亡率(OR=0.85,95%CI,0.75~0.97)[19]。另有一项多中心随机对照研究显示,AT可以改善DIC评分且治疗不增加出血风险[20]

2血栓调节蛋白(thrombomodulin,TM)

SCARLET是一项纳入800名SIC患者多中心随机对照III期临床实验,结果显示尽管TM可以使SIC患者28天死亡率降低2.6%(26.8% vs 29.4%;RR 0.92),但结果不具有统计学意义,且研究者发现20%以上的患者在开始使用TM治疗前病情就已好转

[21]。另一项纳入750名患者的II期临床试验显示TM治疗可以降低死亡率(17.8% vs 21.6%),但这种差异同样不具有统计学意义[22]。不过2023年一项纳入17项研究2296名SIC患者的meta分析显示,重组血栓调节蛋白(Recombinant human soluble thrombomodulin ,rhTM)可以显著降低SIC患者死亡率(OR 0.54 95%CI 0.42-0.71),提高DIC治疗有效率(OR 2.88, 95 % CI 1.83–4.52),并且不增加出血风险(OR 0.92, 95 % CI 0.66–1.28)[23]。上述研究提示我们rhTM治疗SIC具有潜力,探索合适治疗剂量和使用方法可能为SIC治疗提供新的研究方向。

3 组织因子途径抑制剂(Tissue Factor Pathway Inhibitor,TFPI)

OPTIMIST研究纳入1754例SIC患者,研究者发现与安慰剂组相比, TFPI治疗未能有效降低SIC患者病死率且增加了出血风险,不过亚组分析显示对于严重社区获得性肺炎患者重组TFPI治疗可以改善生存率[24]。Wunderink等在2011年开展了另一项关于重组TFPI治疗社区获得性肺炎的RCT试验(CAPTIVATE 试验)遗憾的是该试验因未能观察到阳性结果被提前终止[25]。TFPI作为抑制凝血系统异常激活的抗凝药物,其应用方法及疗效有待进一步的研究证据。

4肝素和低分子肝素

肝素和低分子肝素是目前国内最易获得、应用对多的治疗脓毒症合并凝血功能障碍的临床用药。使用肝素抗凝可以降低卧床带来的深静脉血栓形成和继发脏器栓塞的风险,同时也通过增强AT活性增强抗凝作用[26],且肝素除抗凝作用外还有免疫调节功能,可能减轻炎症反应[27, 28]。FU等人发表的一项meta分析显示肝素抗凝可以降低脓毒症患者28天死亡率((RR: 0.82; 95% CI: 0.72 to 0.94),特别是在高风险人群中(APACHE II>15)(RR: 0.83; 95% CI: 0.72 to 0.96)[29],另一项来自日本的多中心研究同样显示肝素抗凝可以使高危患者(SOFA score 13-17)死亡风险降低(HR=0.601,95% 0.451,-0.800),不过对于中、低风险患者抗凝治疗死亡率没有明显差别且可能带来额外的出血风险[30]。曾有相关研究表明低分子肝素可以降低脓毒症患者28天死亡率改善预后[31],不过既往专门针对低分子肝素治疗SIC的研究并不多,低分子肝素更多作为脓毒症患者支持治疗的一部分。不过随着疫情期间低分子肝素应用经验增多,人们发现其在治疗脓毒症患者方面具有潜在优势,已有研究表明在新冠肺炎患者ISTH SIC评分≥4分患者中低分子肝素可以减少栓塞事件、降低死亡率而不增加出血风险[32]              [33],不过低分子肝素抗凝能否广泛用于脓毒症患者治疗尚需进一步研究结果支持。

五、展望

       SIC患者的治疗重点仍在于早期识别,根据患者实时生命体征及化验检查指标,动态进行SIC评分可能是未来重症监护病房的趋势。已有医生利用大规模数据库和计算机模型实时监测患者SIC状态的报道,如果能结合人工智能及大数据等技术建立有效模型并通过网络共享有可能为全世界医疗中心诊断SIC带来革命性进步[34]。同时人们为了更早识别SIC患者积极寻找新的标志物。LI J探索了可溶性血栓调节蛋白,组织纤溶酶原激活物抑制剂复合物,凝血酶-抗凝血酶复合物,2-纤溶酶抑制剂-纤溶酶复合物在儿童脓毒症中的临床疗效,相比对照组患者,脓毒症患儿中这些指标有显著差异(p=0.001[35]Ishikura H等 将C型凝集素样受体2与血小板计数的比值定义为C2PAC指数,研究发现在脓毒症介导的DIC患者中C2PAC指数与对照组相比显著升高(2.6 ± 1.7 vs. 1.2 ± 0.5 p0.001)且与DIC评分呈正相关(p0.001),多元logistic分析显示C2PAC指数可以作为诊断SIC的标志物。这些标志物在成人患者及大规模研究中是否依然有效有待进一步证实[36]

[1]TANG N, LI D, WANG X, et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia [J]. J Thromb Haemost, 2020, 18(4): 844-7.

[2]ADAMIK B, GOZDZIK W, JAKUBCZYK D, et al. Coagulation abnormalities identified by thromboelastometry in patients with severe sepsis: the relationship to endotoxemia and mortality [J]. Blood Coagul Fibrinolysis, 2017, 28(2): 163-70.

[3]刘春峰. 脓毒症相关的凝血障碍 [J]. 中国小儿急救医学, 2018, 25(7): 490-3.

[4]IBA T, YAMADA A, HASHIGUCHI N, et al. New therapeutic options for patients with sepsis and disseminated intravascular coagulation [J]. Pol Arch Med Wewn, 2014, 124(6): 321-8.

[5]IBA T, HELMS J, CONNORS J M, et al. The pathophysiology, diagnosis, and management of sepsis-associated disseminated intravascular coagulation [J]. J Intensive Care, 2023, 11(1): 24.

[6]IBA T, UMEMURA Y, WADA H, et al. Roles of Coagulation Abnormalities and Microthrombosis in Sepsis: Pathophysiology, Diagnosis, and Treatment [J]. Arch Med Res, 2021, 52(8): 788-97.

[7]GOULD T J, LYSOV Z, SWYSTUN L L, et al. Extracellular Histones Increase Tissue Factor Activity and Enhance Thrombin Generation by Human Blood Monocytes [J]. Shock, 2016, 46(6): 655-62.

[8]陈雨薇, 陈薇薇, 陈影, et al. 中性粒细胞胞外诱捕网在脓毒症相关性凝血功能障碍中的作用研究进展 [J]. 中华危重病急救医学, 2022, (02): 198-201.

[9]卢鑫, 魏昕, 王志斌. 抑制补体激活在脓毒症相关性凝血功能障碍治疗中作用的研究进展 [J]. 中华危重病急救医学, 2023, (04): 438-41.

[10]MADOIWA S, NUNOMIYA S, ONO T, et al. Plasminogen activator inhibitor 1 promotes a poor prognosis in sepsis-induced disseminated intravascular coagulation [J]. Int J Hematol, 2006, 84(5): 398-405.

[11]IBA T, LEVY J H. Sepsis-induced Coagulopathy and Disseminated Intravascular Coagulation [J]. Anesthesiology, 2020, 132(5): 1238-45.

[12]EVANS L, RHODES A, ALHAZZANI W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021 [J]. Intensive Care Med, 2021, 47(11): 1181-247.

[13]IBA T, LEVI M, THACHIL J, et al. Communication from the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis on sepsis-induced coagulopathy in the management of sepsis [J]. J Thromb Haemost, 2023, 21(1): 145-53.

[14]IBA T, NISIO M D, LEVY J H, et al. New criteria for sepsis-induced coagulopathy (SIC) following the revised sepsis definition: a retrospective analysis of a nationwide survey [J]. BMJ Open, 2017, 7(9): e017046.

[15]IBA T, LEVY J H, WARKENTIN T E, et al. Diagnosis and management of sepsis-induced coagulopathy and disseminated intravascular coagulation [J]. J Thromb Haemost, 2019, 17(11): 1989-94.

[16]齐文旗, 张斌, 郑忠骏, et al. 拯救脓毒症运动:2021年国际脓毒症和脓毒性休克管理指南 [J]. 中华急诊医学杂志, 2021, (11): 1300-4.

[17]IBA T, SAITOH D, WADA H, et al. Efficacy and bleeding risk of antithrombin supplementation in septic disseminated intravascular coagulation: a secondary survey [J]. Crit Care, 2014, 18(5): 497.

[18]BROHI K, COHEN M J, GANTER M T, et al. Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis [J]. J Trauma, 2008, 64(5): 1211-7; discussion 7.

[19]AOTA T, MATSUMOTO T, SUZUKI K, et al. Antithrombin and mortality in severe pneumonia patients with sepsis-associated disseminated intravascular coagulation: an observational nationwide study: comment [J]. J Thromb Haemost, 2015, 13(4): 679-80.

[20]GANDO S, SAITOH D, ISHIKURA H, et al. A randomized, controlled, multicenter trial of the effects of antithrombin on disseminated intravascular coagulation in patients with sepsis [J]. Crit Care, 2013, 17(6): R297.

[21]VINCENT J L, FRANCOIS B, ZABOLOTSKIKH I, et al. Effect of a Recombinant Human Soluble Thrombomodulin on Mortality in Patients With Sepsis-Associated Coagulopathy: The SCARLET Randomized Clinical Trial [J]. Jama, 2019, 321(20): 1993-2002.

[22]VINCENT J L, RAMESH M K, ERNEST D, et al. A randomized, double-blind, placebo-controlled, Phase 2b study to evaluate the safety and efficacy of recombinant human soluble thrombomodulin, ART-123, in patients with sepsis and suspected disseminated intravascular coagulation [J]. Crit Care Med, 2013, 41(9): 2069-79.

[23]KATO H, HAGIHARA M, ASAI N, et al. Efficacy and safety of recombinant human soluble thrombomodulin in patients with sepsis-induced disseminated intravascular coagulation - A meta-analysis [J]. Thromb Res, 2023, 226: 165-72.

[24]ABRAHAM E, REINHART K, OPAL S, et al. Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial [J]. Jama, 2003, 290(2): 238-47.

[25]WUNDERINK R G, LATERRE P F, FRANCOIS B, et al. Recombinant tissue factor pathway inhibitor in severe community-acquired pneumonia: a randomized trial [J]. Am J Respir Crit Care Med, 2011, 183(11): 1561-8.

[26]ZARYCHANSKI R, DOUCETTE S, FERGUSSON D, et al. Early intravenous unfractionated heparin and mortality in septic shock [J]. Crit Care Med, 2008, 36(11): 2973-9.

[27]LI X, LI Z, ZHENG Z, et al. Unfractionated heparin ameliorates lipopolysaccharide-induced lung inflammation by downregulating nuclear factor-κB signaling pathway [J]. Inflammation, 2013, 36(6): 1201-8.

[28]LI X, LIU Y, WANG L, et al. Unfractionated heparin attenuates LPS-induced IL-8 secretion via PI3K/Akt/NF-κB signaling pathway in human endothelial cells [J]. Immunobiology, 2015, 220(3): 399-405.

[29]FU S, YU S, WANG L, et al. Unfractionated heparin improves the clinical efficacy in adult sepsis patients: a systematic review and meta-analysis [J]. BMC Anesthesiol, 2022, 22(1): 28.

[30]YAMAKAWA K, UMEMURA Y, HAYAKAWA M, et al. Benefit profile of anticoagulant therapy in sepsis: a nationwide multicentre registry in Japan [J]. Crit Care, 2016, 20(1): 229.

[31]FAN Y, JIANG M, GONG D, et al. Efficacy and safety of low-molecular-weight heparin in patients with sepsis: a meta-analysis of randomized controlled trials [J]. Sci Rep, 2016, 6: 25984.

[32]TANG N, BAI H, CHEN X, et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy [J]. J Thromb Haemost, 2020, 18(5): 1094-9.

[33]SPYROPOULOS A C, GOLDIN M, GIANNIS D, et al. Efficacy and Safety of Therapeutic-Dose Heparin vs Standard Prophylactic or Intermediate-Dose Heparins for Thromboprophylaxis in High-risk Hospitalized Patients With COVID-19: The HEP-COVID Randomized Clinical Trial [J]. JAMA Intern Med, 2021, 181(12): 1612-20.

[34]ZHAO Q Y, LIU L P, LUO J C, et al. A Machine-Learning Approach for Dynamic Prediction of Sepsis-Induced Coagulopathy in Critically Ill Patients With Sepsis [J]. Front Med (Lausanne), 2020, 7: 637434.

[35]LI J, ZHOU J, REN H, et al. Clinical Efficacy of Soluble Thrombomodulin, Tissue Plasminogen Activator Inhibitor complex, Thrombin-Antithrombin complex,α2-Plasmininhibitor-Plasmin complex in Pediatric Sepsis [J]. Clin Appl Thromb Hemost, 2022, 28: 10760296221102929.

[36]ISHIKURA H, IRIE Y, KAWAMURA M, et al. Early recognition of sepsis-induced coagulopathy using the C2PAC index: a ratio of soluble type C lectin-like receptor 2 (sCLEC-2) level and platelet count [J]. Platelets, 2022, 33(6): 935-44.