学科分类
/ 1
18 个结果
  • 简介:某桥为2×122.5m独塔斜拉桥,主梁为Π形截面预应力钢筋混凝土梁,该桥建成于20世纪90年代,经过多年运营,50号混凝土桥面板普遍出现纵向裂缝。为研究裂缝成因,采用有限元软件计算各种荷载作用下Π形梁桥面板的横向应力,通过荷载试验实测Π形梁桥面板的横向应力和纵向裂缝开展情况,并进行对比分析。结果表明:自重荷载不是桥面板产生纵向开裂的因素;汽车荷载对桥面板纵向开裂有一定的影响,但不是主要原因;按85规范温度梯度计算,桥面板底面未出现横向拉应力,按2015规范正温度梯度计算,桥面板底面拉应力达4.46MPa,超过现行规范《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)中有关C50混凝土的抗拉强度设计值,85规范关于温度梯度荷载的规定偏不安全,是导致桥面板纵向开裂的主要原因;横隔梁预应力对桥面板纵向开裂的影响较小。

  • 标签: 斜拉桥 Π形主梁 纵向裂缝 横向应力 温度梯度 有限元法
  • 简介:为了解波形钢腹板矮塔斜拉桥新型组合结构桥梁的整体稳定特性,以跨径(58+118+188+108)m的某波形钢腹板矮塔斜拉桥为背景,根据波形钢腹板箱梁的力学行为特点,利用MIDASCivil软件建立该桥杆系单元模型,对比ANSYS软件建立的空间块体板壳组合单元模型的计算结果,验证了杆系单元模型的有效性,在此基础上采用杆系模型计算全桥的整体稳定性。计算结果表明:恒载是桥梁重要的失稳因素,引起的第1阶失稳模态为面内主墩屈曲失稳;风荷载单独作用引起的第1阶失稳模态主要是面内对称弯曲失稳和面内反对称弯曲失稳,稳定系数较大;桥梁的弹性稳定系数最小值为19.79;桥梁结构整体失稳模态接近于高墩连续刚构桥的失稳模态;考虑几何非线性后稳定系数最小值为19.4,桥梁结构稳定性满足桥梁设计规范要求,该桥在运营阶段不会发生失稳破坏。

  • 标签: 矮塔斜拉桥 波形钢腹板 单箱多室箱形梁 稳定性分析 有限元法 杆系模型
  • 简介:潼南涪江大桥是一座主跨220m的单塔空间双索面斜拉桥,桥塔高156m,为钢筋混凝土结构,采用花瓶形异形结构,由多段复合曲线组成。塔柱施工过程中,布设测量控制网,通过AutoCAD三维建模进行数据分析计算,使用CASIOfx-9860Ⅱ进行线形要素的计算器编程,采用三维坐标放样法对劲性骨架、预应力管道、模板测量定位进行控制,每节塔柱浇筑混凝土拆模后进行塔柱成品测量,确保了异形塔柱平面位置、结构尺寸、轴线偏位以及竖直度均满足设计规范要求。

  • 标签: 斜拉桥 桥塔 花瓶形 异形结构 控制网 测量
  • 简介:广茂线肇庆西江特大桥为5×144m公铁两用连续钢桁梁桥,该桥因受采砂船龙门架撞击,造成E31′-E32′节间下弦杆、铁路纵梁及下弦纵平联变形严重,直接影响到结构自身及列车通行安全。经研究,对E31′-E32′节间下弦杆,采用受损杆件局部矫正方案。以原地矫正加固修复,不中断列车行车,不损伤原有结构为设计原则,通过反力架结合PLC同步控制系统精确施顶,实施受损杆件局部变形矫正施工,采用外侧贴板和截面偏心2种方式进行杆件局部补强,快速恢复桥梁承载及通行能力,有效节约工期,减少交通恢复时间。经行车试验检测,加固后动力性能能够满足现行列车正常运营需求。

  • 标签: 公路铁路两用桥 钢桁梁桥 矫正 局部补强 下弦杆 PLC同步控制系统
  • 简介:沌口长江公路大桥主桥为(100+275+760+275+100)m钢箱梁斜拉桥,2号墩位于长江砂层区域,砂层厚度达7m,常年水深5m以上。2号墩钻孔桩施工完成后,采用钢板桩围堰进行水中深基坑承台施工。钢板桩采用拉森Ⅵ(600mm×210mm)钢板桩(长24m),围檩系统共3层,由3HN700×300型钢、Φ1000mm×10mm钢管、2HN588×300型钢等组成。钢板桩围堰采用“先支法”施工工艺,首先采用导向挂靴工艺,分层整体下放围檩系统,下放到位后插打钢板桩;然后水下吸泥,浇筑封底混凝土,待封底混凝土强度达到设计要求后,以控制钢板桩内外水头差的原理进行分级抽水,并对第一、第二层围檩系统进行完善及体系转换;第三层围檩施工完成后,进行最后一级抽水及第一层承台施工,完成第三层围檩体系转换后拆除第三层围檩,进行第二层承台施工。

  • 标签: 斜拉桥 长江砂层区域 深基坑 钢板桩围堰 围檩 分级抽水
  • 简介:为研究运营桥梁抬桩加固施工引起的既有桩基础扰动对结构安全性的影响,以沪渝高速(G50)太湖大桥抬桩加固施工为背景,采用有限元软件建立桥墩和基础(一半结构)有限元模型,分析抬桩施工过程桥墩位移规律和既有基桩弯矩;抬桩施工过程中,基于现有流体静力水准系统(HLS),在墩身内侧布置2个监测点,进行墩身沉降在线监测。结果表明:抬桩施工过程对既有桩基础沉降无影响,承台扩大后改善了既有基桩抗弯性能;监测期间,施工和车辆荷载对既有桩基础(桥墩)沉降的影响表现为数据整体平稳基础上的波动,无施工及车流量小的夜间,消除弹性变形(沉降)后的最终平均沉降约1.2mm;采用高精度的HLS可实现施工过程中桥墩(基础)沉降的在线监测,提高了效率,综合保障了运营桥梁的安全。

  • 标签: 运营桥梁 抬桩加固 桩基础 桥墩 沉降 有限元法
  • 简介:为研究实测车辆荷载作用下桥梁的位移响应,以安庆长江公路大桥为工程背景,基于参数修正方法建立有限元模型,计算得到跨中位移影响线;基于动态称重系统(WIM)及拍照系统提取车流数据,将实际车流信息施加于位移影响线,分析实测车辆荷载下桥梁跨中位移的反演值,并与GPS系统监测得到的位移值进行对比。结果表明:基于车辆荷载反演桥梁位移响应的方法能较为准确地反演出车辆过桥时主跨跨中位移值的变化情况,车辆荷载作用下桥梁跨中位移存在时滞效应,选取120s用于修正安庆长江公路大桥GPS监测值和反演值时程曲线,消除时滞效应后两者吻合较好;车辆荷载不仅引起桥梁下挠,同时造成位移响应振荡效应,且荷载越大振荡效应越明显;单车辆荷载作用下GPS监测值与反演值两者相差小于10%,多车辆荷载作用下两者相差较大。该方法可为桥梁健康监测以及GPS监测值校验提供参考。

  • 标签: 斜拉桥 健康监测 车辆荷载 位移响应 动态称重 GPS系统
  • 简介:杨泗港长江大桥汉阳侧匝道桥为连续梁桥,处于地铁上下行隧道区间,基础采用1.2m、1.5m钻孔桩,桩身与隧道最小净距仅3.1m,施工要求与地铁交叉施工区的钻孔桩须在地铁运营调试前完成。受施工环境和工期等限制,该桥桩基采用快速施工工艺:对局部土层进行注浆预加固;采用2台多功能旋挖钻机旋压跟进长护筒;采用大比重优质膨润土泥浆护壁、振动小的设备钻孔等工艺进行快速成孔施工。施工中,护筒对接、焊接接长、护筒内取土、护筒旋转下压等工序循环交替进行直至支护标高,其中第一节护筒底部装有合金钻头(比护筒直径大2cm)。成桩时,单桩钢筋笼采用“长线”法在台座上整体制作成型,接头机械连接,采用汽车吊分节段接长吊装入孔;采用2次清孔工艺,清孔合格后灌注水下混凝土。施工监测和检测结果表明,地铁隧道结构安全,桩基质量满足要求。

  • 标签: 连续梁桥 钻孔灌注桩 地铁隧道 预注浆加固 护筒跟进 泥浆护壁
  • 简介:平塘特大桥为(249.5+2×550+249.5)m三塔双索面叠合梁斜拉桥,中塔承台于冬季施工,环境温度较低且天气变化剧烈、冷击效应明显。为避免在施工期间出现危害性裂缝,对承台大体积混凝土进行了温度控制。中塔承台分3次浇筑,施工过程中,采用了合理的混凝土配合比;对入模温度进行严格控制;在混凝土外部搭设保温棚,采用蒸汽养生等保温措施;内部设置了冷却水系统进行降温;表面、底面配制了防裂钢筋网。采用有限元软件MIDAS计算承台混凝土温度场和应力场,并在承台内部布置温度测点,对混凝土温度进行全程监测。结果表明:实测温度场的变化趋势与计算结果吻合较好,主要温度场和应力场指标均符合规范要求,大体积混凝土表面在整个浇筑养护期间均未出现明显有害裂缝。

  • 标签: 斜拉桥 中塔承台 大体积混凝土 温度控制 仿真计算 温度监测
  • 简介:广东榕江大桥为(60+70+380+70+60)m双塔双索面混合梁低塔斜拉桥,采用门式框架桥塔,斜拉索辐射型布置,桥塔顶设钢锚室进行斜拉索集中锚固。钢锚室高6.0m、顺桥向长4.6m、横桥向宽2.36m,由壁板、腹板、底板、隔板、锚箱部件及预埋件等构成,横桥向分为3个锚室,每个锚室锚固4对斜拉索,锚室采用重防腐涂装体系。钢锚室制造时,对钢锚室底板及预埋承压板端面进行整体铣面加工;采用超声冲击和整体振动技术,消除钢锚室焊接残余应力。钢锚室安装时,在预埋承压板与塔顶混凝土间预留5cm空隙,采用压浆填充密实,并对预埋承压板的平整度进行跟踪测量;钢锚室采用900t浮吊一次性吊装就位,再利用4台三向千斤顶进行微调。实践表明,该桥桥塔钢锚室设计合理,施工关键技术有效保证了钢锚室制造和安装精度。

  • 标签: 斜拉桥 斜拉索 集中锚固 钢锚室 焊接残余应力 后注浆
  • 简介:沪通长江大桥钢桁梁主要采用Q370qE和Q420qE钢板,在焊接工艺评定试验中发现部分Q370qE钢接头热影响区硬度超标(硬度值>380HV10)。针对此情况,采用不同的接头形式、焊接方法、焊接材料进行多组焊接对比试验,研究不同焊接工艺及钢板化学成分对钢结构接头热影响区硬度的影响。研究结果表明:钢板的材质与接头热影响区硬度超标有较大的相关性;控制焊接热输入及焊道层间预热温度,并尽量采用多层多道焊的焊接方式,能够有效控制接头热影响区硬度超标问题;钢板中的碳元素含量及合金元素配比对接头热影响区硬度有影响,应严格控制碳元素含量,优化合金元素配比。

  • 标签: 公路铁路两用桥 钢结构 堆焊 T形焊 热影响区 硬度
  • 简介:桥梁墩柱是桥梁结构中的关键构件,为研究近断层多脉冲地震动对桥梁墩柱地震风险的影响,采用场地地震危险性、结构地震易损性和结构震后损失3项参数进行综合评估,以PGA为地震动强度指标,分析某8度设防场地的地震年均发生概率,利用OpenSees建立某桥梁墩柱有限元模型并给出其结构的易损性曲线,结合损失比得到桥梁墩柱结构的年均预期损失比分布对比曲线和年均预期损失比。结果表明:随着地震动强度的增大,其对应的年均发生概率反而减小,在小于0.3g范围内的年均地震动发生概率最大;能量最强方向地震时程对应易损性曲线的上限,水平最强方向上的显著小波分量不适合分析桥梁墩柱结构的地震风险,水平单向地震动低估了墩柱的年均预期损失比;对于桥梁墩柱的地震风险而言,能量最强方向上的地震时程对应着桥梁墩柱地震风险的最不利情况。

  • 标签: 桥墩 近断层 多脉冲 地震危险性 易损性 地震风险评价
  • 简介:沌口长江公路大桥主桥为(100+275+760+275+100)m双塔双索面钢箱梁斜拉桥,钢箱梁含风嘴宽46m,中跨合龙段长4.6m、重122.4t。该桥中跨采用单侧起吊、顶推辅助合龙方案,即北岸侧塔梁纵向临时约束兼顾作为纵向顶推装置顶推北主桥,由南岸桥面吊机单侧起吊合龙段进行喂梁。合龙施工时,结合合龙段起吊操作间隙、喂梁温度对合龙口宽度的影响等,纵向顶推装置的顶推量按20cm、顶推力按6000kN设计;针对顶推过程中结构响应,通过支撑型钢将合龙段重量平均分配至合龙口两侧梁段上、斜拉索张拉调整合龙口相对高差、对拉系统进行轴线调整、纵向牵引辅助进行缝宽调整和锁定等技术措施,完成合龙口姿态调整;合龙段匹配时,以边腹板对齐,中腹板处马板配合千斤顶进行匹配错台控制。全桥合龙后,合龙段轴线偏位5mm,标高与目标值的误差为2mm,合龙段与两侧标准段匹配良好。

  • 标签: 斜拉桥 钢箱梁 顶推辅助合龙 顶推装置 顶推量 顶推力
  • 简介:蒙华铁路洞庭湖特大桥主桥是跨度布置为(98+140+406+406+140+98)m的三塔双索面钢箱钢桁结合梁斜拉桥。针对覆盖层浅、岩石破碎且岩面倾斜、施工水域狭窄、深水岩石爆破清理等难题,制定了桥塔基础施工采用双壁钢套箱围堰,先围堰后平台的总体施工方案。围堰采用直径为50.5m、侧板厚度为1.5m的圆形结构形式,并设置6根3.0m辅助桩用于围堰的抗浮,减少了封底及基坑开挖。圆形套箱围堰气囊法下河时,采用浮式托架,减少了吃水,方便了托架的回收利用。5号墩基础采用精确爆破技术和短锚围堰定位技术,使得狭窄水域施工成为可能。钻孔施工中,采用桩周注浆、优质泥浆护壁和减压钻进等技术,解决了倾斜岩面、岩层破碎地质的钻孔施工难题。

  • 标签: 斜拉桥 结合梁 桥塔 钻孔桩 基础 围堰
  • 简介:为研究波纹钢腹板-混凝土组合T梁桥与平钢腹板-混凝土组合T梁桥力学性能优劣,以某3跨钢-混组合连续T梁桥为背景,采用非线性有限元软件建立2种腹板(平钢腹板和波纹钢腹板)形式的全桥实体模型,分析二者在车辆偏载作用下桥梁的纵向弯曲、横向挠曲、刚性扭转及稳定性能,并进行对比。结果表明:与平钢腹板-混凝土组合T梁桥相比,波纹钢腹板-混凝土组合T梁桥抗弯刚度可提高10%,桥面板抗裂性可提高约20%,两者剪力滞系数接近;两者纯扭刚度相差不大,整体横向挠曲性能接近;波纹钢腹板-混凝土组合T梁桥扭转刚度略大,跨中最大转角约为平钢腹板-混凝土组合T梁桥的85%,腹板扭转附加剪应力不到平钢腹板-混凝土组合T梁桥的一半;波纹钢腹板-混凝土组合T梁桥的前5阶屈曲因子是平钢腹板-混凝土组合T梁桥的5-8倍,线弹性稳定性极大,且腹板无需额外设置加劲肋,经济优势较大。

  • 标签: 组合梁桥 T梁 波纹钢腹板 平钢腹板 纵向弯曲 横向弯曲
  • 简介:至喜长江大桥大江桥为主跨838m的单跨悬索桥,猫道全长1350m,利用牵引索作为导索进行过江架设,架设时正值长江汛期,由于封航原因上游侧猫道先导索无法采用“水面过渡法”架设。通过方案设计研究,上游侧猫道先导索采用高空横移法架设,即在两岸下游塔顶门架上设置可滑动转向装置,利用下游牵引索将先导索牵引至北塔后,通过转向装置滑动,在空中将先导索横移至上游侧,实现先导索架设。可滑动转向装置利用塔顶10t辅助卷扬机设置,在两岸下游塔顶门架柱脚处设置1台单门滑车,将辅助卷扬机钢丝绳穿过滑车后连接16t卡环,先导索穿过卡环后进行转向,通过辅助卷扬机放绳,实现先导索横向移动。该桥上游侧猫道先导索采用高空横移法架设施工,历时3h完成先导索与导索牵引过江,架设过程顺利。

  • 标签: 悬索桥 猫道 先导索 导索过江 可滑动转向装置 高空横移
  • 简介:重庆红岩村嘉陵江大桥为高低塔双索面公轨两用钢桁梁斜拉桥,索塔斜拉索锚固采用钢锚箱形式。钢锚箱为箱形结构,最大节段尺寸为6.2m×2.2m×3.0m(长×宽×高),节段最重达26t,吊装高度达160m。首节钢锚箱索导管长达8m,跨越塔柱2个浇筑节段(标准节段高6m)。针对钢锚箱体积大、重量重、吊装高度高和首节钢锚箱索导管超长的特点,采用专用起重设备吊装钢锚箱节段,首节钢锚箱与索导管分离安装,首节钢锚箱索导管通过空间位置放样、初定位、精密定位确保三维坐标精度,采用L10角钢进行加强以防首节钢锚箱变形,剩余节段钢锚箱安装采用导向装置就位。施工中严格控制每节段钢锚箱的平面位置、高程、倾斜度、顶面平整度,实现了钢锚箱安全、优质、快速的施工目标。

  • 标签: 公轨两用桥 斜拉桥 钢锚箱 索导管 定位 测量
  • 简介:孟加拉帕德玛大桥为公铁两用全焊接整体节点钢桁梁桥,桥跨布置共分7联:6×(6×150m)+1×(5×150m)。上层公路桥面采用混凝土板块预制结构,现场整体浇筑;下层铁路桥面为横、纵梁板梁结构,横梁与钢桁梁下弦整体节点全熔透对接焊接,采用“整跨一体运架”方案施工。150m跨3D拼装与焊接施工场地选择在桥址陆地,杆件运输至拼装场后,首先在胎架上进行弦杆与节点的组拼与焊接(二拼),之后进行桁片的组拼与焊接(桁拼),桁片拼装结束后,在150m跨整孔大节段立体拼装前,采用起重设备完成由平位到立位的转换,最后完成150m跨3D拼装与焊接(立拼)。该拼装技术首次应用于此类大型全焊接钢桁梁桥,实践证明,该施工技术可行。

  • 标签: 公路铁路两用桥 钢桁梁 整体节点 组拼 焊接 3D拼装