学科分类
/ 25
500 个结果
  • 简介:非常浅层生物气可分成两个截然不同的含气系统,因为它们具有不同特征。早期生成的含气系统的几何形状呈席状,并且在源岩和储集岩沉积后不久就开始生气。晚期生成的含气系统的几何形状呈环状,并且源岩和储集岩沉积后隔很长一段时间才生气。对于这两个含气系统类型来说,气主要是甲烷气,并且均与未达到热成熟的源岩有关。早期生成的生物气含气系统以艾伯塔(Alberta)、萨斯喀彻温(Saskatchewan)和蒙大拿(Montana)的大平原(GreatPlains)北部白垩纪低渗透率岩层产出的气为代表。主要产区为艾伯塔盆地东南边缘和威利斯顿(Williston)盆地西北边缘地区。很大体积的白垩纪岩层的区域分布型式可以概括为西面为厚层、陆相、粗粒碎屑岩、而东面为海相薄层、细粒岩层。下部的储集岩往往要比上部储集岩颗粒更细,并且具有更低的孔隙度和渗透率。同样,下部的源岩层具有更高的总有机碳值。上部单元和下部单元的侵蚀、沉积、变形和生产模式均与以区域断裂线为界的基底断块的几何形状有关。地球化学研究表明气和共同产出的水处于平衡状态,并且该流体相对比较老,即达66Ma。早期生成含气系统的其它例子还有威利斯顿盆地西南边缘的白垩系碎屑储集层和丹佛(Denver)盆地东部边缘的白垩层。密歇根(Michigan)盆地北部边缘的泥盆系安特里姆(Antrim)页岩可作为晚期生成生物气含气系统的典型。储集岩是裂缝性,富含有机质的黑色页岩,它同时也作为源岩。尽管裂缝对开采很重要,但是裂缝与某些具体地质构造的关系并不清楚。地球化学资料表明,和气一起采出的大量水是相当淡的水,而且比较年轻。目前的见解认为,生物气是在冰川融水进入由裂缝造成的通道系统时生成的,可能现在还继续生成。晚期生成含气系统的其它例子还有�

  • 标签: 非常规浅层生物气系统 地质结构 成因 岩层 储集层 源岩性
  • 简介:摘要:非常油气藏资源含量低、孔隙度低、渗透率低、产量低,勘探开发难度大,需要特殊的技术手段。长距离水平井和渐进破碎技术非常油藏开发的重要技术。为加快非常油藏勘探开发,中原油田开发了高温水力压裂液、水平井低损失、勘探优化设计技术和多层压裂系统。11段1300米全封闭油罐水平井和非常油气罐设计、施工和勘探开发技术取得突破。

  • 标签: 非常规油藏 分段压裂完井
  • 简介:摘要:近年来,我国的经济发展迅速,各行各业也迎来了新的发展机遇。在此背景之下,新型的非常能源的发展也格外受到重视。在我国,页岩气的开发技术还处在萌芽阶段,但是我国的页岩气资源却十分富足。这就导致了我国的页岩气开发陷入了技术窘境[1]。现阶段,我国的页岩气的开发技术还需要解决在页岩气取心中、运输时等情况下,岩心被破坏的问题;除此之外,还有针对岩心质量低下以及岩心损坏等其他问题。基于此,本篇文章将探讨研究非常能源页岩气岩心保护技术,以期为我国的页岩气开发提供技术上的建设性意见。

  • 标签: 非常规能源 页岩气 岩心保护技术
  • 简介:摘要:随着老旧住宅电梯使用年龄的增加,人们对其运行的安全性是非常关注与重视,但是,许多电梯工作的时间较长,长时间的使用,必然会对电梯的性能等多方面带来不同程度的影响,增加安全问题发生的可能和概率。

  • 标签: 老旧电梯检验 非常规问题 策略
  • 简介:摘要:随着老旧住宅电梯使用年龄的增加,人们对其运行的安全性是非常关注与重视,但是,许多电梯工作的时间较长,长时间的使用,必然会对电梯的性能等多方面带来不同程度的影响,增加安全问题发生的可能和概率。

  • 标签: 老旧电梯检验 非常规问题 策略
  • 简介:从80年代早期北美就开始采用以液态二氧化碳为基础的压裂液系统泵入油藏进行储层改造,1994年开始采用以液态二氧化碳\氮气为基础的压裂液系统进行压裂。此压裂液已广泛应用于渗透率值在0.1—10达西之间的各种地层中,在1000多口井中进行了应用,其井深超过3000米,井底温度在10°~110°之间。此压裂液的物理和化学性质非常有吸引力。以前我们曾做了一些增加液态二氧化碳粘度的尝试,可都没有成功。本文描述了一种即能增加粘度又能保持液态二氧化碳非破坏性的新型压裂液,此压裂液是在液态二氧化碳中形成氮的泡沫。该压裂液使用的是一种不损坏地层的可溶性二氧化碳发泡剂,可以释放在大气中而不会污染环境。此压裂液不包括其它压裂液,如水、乙醇或碳氢化合物。泡沫的形成遵循常规发泡物理原理。由于只使用数量有限的液态二氧化碳(对于内部质量为75%-80%的泡沫大约占20%-25%的体积),大多数工作能在一天内处理,使该系统比典型液态二氧化碳压裂系统成本效率更高。本文叙述了液态二氧化碳非常发泡技术在加拿大浅层油气藏应用的实例总结。

  • 标签: 非常规发泡技术 油田 二氧化碳 压裂技术 压裂液 发泡剂
  • 简介:本文要介绍非常含气系统(亦即连续型气藏)评价的有关概念。连续型气藏的存在或多或少地独立于含水层位,而且其形成不能直接归因于气体在水中的浮力。非常气藏不是由下倾水界面限定的各个可数的气田或气藏。因为,传统资源评价方法是基于对未发现的、不连续气田大小和数量的估算,不能适用于连续气藏,所以需要有专门的评价方法。非常气藏也就是连续气藏,其中包括煤层甲烷、盆地中心气、所谓的致密砂岩气、裂缝页岩(和白垩)气以及气水合物。盆地深部气系统和微生物气系统既可以是连续气藏,也可以不是,这取决于其地质背景。对连续气藏使用了两种基本的资源评价方法。第一种方法以对地层气的估算为基础。对地层总气量的体积估算一般都要同时估算总采收率。这样就能通过计算留存在沉积地层中的天然气体积,收缩评价范围,以预测可能增加的储量。第二种方法所依据的是连续气储层的生产动态,例如气井和气藏模拟的经验动态。在这两种评价方法中,生产特性(与地层气不同)是预测潜在新增储量的基础。

  • 标签: 非常规含气系统 资源评价 展望 评价方法 连续气藏 储量
  • 简介:非常气的开发中,对比不同完井方式或气井管理策略对生产动态的影响仍然具有重要意义,主要是由于开发生产历史相对较短、缺乏长期的类似模拟。研究将不同生产周期作为潜在可靠的量化指标。利用气井投产初期30天的产量数据来求取非常气井的产能是很常见的一种做法,旨在获得储层信息,以此作为投资者的投资依据。依据经验来看,投产初期30天的产量数据通常不能量化气井的潜能。本研究旨在对比不同生产周期进行分析预测的结果,从而确定多长生产周期能最准确地预测长期生产动态指标,所用井的实际生产数据源自美国俄亥俄州Utica区块生产井。

  • 标签: 气井管理 生产动态 指标预测 生产周期 量化指标 非常规气
  • 简介:摘要:非常油气藏的勘探开发工作自进入二十一世纪以来,世界各国都很积极。致密油、页岩油产量快速增长,页岩气产量持续增长,煤层气、致密气产量稳定,天然气水合物试产取得重大突破。随着这些年的发展,中国在非常油气勘探开发方面取得了重大进展。致密气、致密油、页岩气产量快速增长,页岩油勘探开发已被提升到国家战略高度。

  • 标签: 非常规 油气藏 特征分类
  • 简介:非常低渗(致密)轻质油油藏日已成为北美一种重要的油藏类型。和非常气藏一样,这类低渗油藏的特征也复杂多变,从而导致油井显示出不同的生产动态特征。非常轻质油油藏所用的钻完井方法也有别于常规油藏。我们建议借鉴非常气藏分类方法(即基于储层/流体性质的分类方法)对非常轻质油油藏进行分类,因为,迄今为止,在西加拿大不同的非常轻质油油区所观察到的储层和生产特征明显不同。我们建议将这类油藏统称为“非常轻质油”油藏,以区别于非常重质油(高粘)油藏。通过研究,我们提出下列非常轻质油油藏类别,可用作勘探开发实用指南:1.“光环油藏”——源岩与储层不同层且基质渗透率相对较高(〉0.1md)的轻质油油藏。这类油藏达不到常规油藏的岩石物性下限和产层标准,储层岩性可以是碎屑岩或碳酸盐岩。2.“致密油藏”——源岩与储层不同层且基质渗透率低(〈O.1md)的轻质油油藏。这类油藏与致密气藏类似,储层岩性可以是碎屑岩或碳酸盐岩。3.“页岩油藏”——源岩与储层同层且基质渗透率极低、有机质含量较高的轻质油油藏。页岩油藏与页岩气藏类似。这三种非常轻质油油藏都需要现代化完井方法(如水平井)和增产方法(水力压裂)方可实现商业化开采。此外,这三种油藏及对应气藏之间的差异与流体高压物性之间的差异并无紧密关系。文中,我们利用现代产量不稳定分析方法研究西加拿大三种非常轻质油油藏的生产特征差异,并推断出每种油藏生产动态特征的主要影响因素。不出我们所料,油藏类型和完井方法不同,生产动态特征差异很大。

  • 标签: 轻质油油藏 生产分析 加拿大 非常规气藏 储层岩性 动态特征
  • 简介:非常浅层生物成因天然气分为两个不同属性的系统。早生系统和晚生系统。早生系统呈毯状,天然气形成于储集层和烃源岩的沉积作用之后不久。晚生系统呈环形,在储层和烃源岩沉积作用与天然气形成之间有一段很长的时间间隔。这两种天然气系统都以甲烷为主,并且都与非热成熟的烃源岩有关。典型的早生生物成因天然气系统在加拿大的艾伯塔北部大平原、萨斯喀彻温省和美国的蒙大拿州,其产层为白垩系低渗透储集层。主要产区位于艾伯塔盆地东南边缘和威利斯顿盆地的西北边缘。巨厚的白垩系储集层的区域沉积模式为:西部为非海相粗粒厚碎屑岩,东部为细粒海相岩层。下部储集层比上部粒度细,孔隙度和渗透率较低。相应地,下部烃源岩总有机碳含量(TOC)较高。上部和下部地层单元的剥蚀作用、沉积作用、变形作用和产量等特征均与以区域线性断层为边界的基底断裂有关。地化研究表明,天然气和同时产出的水是均衡的,且产出液年代较老,为66Ma(百万年)。早生天然气系统的例子还有威利斯顿盆地西南边缘的白垩系碎屑岩储层和丹佛盆地东缘的白垩岩。晚生生物成因天然气系统的代表是密执安盆地北缘泥盆系Antrim页岩。储集层为富含有机质的裂缝性黑色页岩。它也具有烃源岩的作用。尽管裂缝对于生产很重要,但与特殊地质构造的关系不明确。大量的水随着天然气一同产出。地化资料表明水为淡水,年代也较轻。目前的研究认为,过去生成了生物成因气,并且今后当冰川溶化成的水流入裂缝形成的排泄系统时,这种生气作用还将继续下去。晚生系统的例子还有伊利诺斯盆地东缘的泥盆系新Albany页岩和波德河盆地西北边缘的第三系煤层甲烷产层。两种生物成因天然气系统具有相似的资源演化史。起初,由于缺乏研

  • 标签: 天然气 非常规储层 生物成因 热成因 热成熟度 含油气系统
  • 简介:非常压裂试油井口与套管头的连接方式不同,泵注头不同,井口主通径不同,要求压力等级高(70MPa、105MPa),能带压泵送桥塞,远程控制,高压投球。结合河南油田非常压裂试油特点,研究配套了简易套管头完井压裂试油井口装置、标准套管头完井压裂试油井口装置和水平井泵送桥塞射孔压裂试油井口装置,形成了河南油田非常压裂试油井口配套技术系列。

  • 标签: 河南油田 非常规压裂 配套技术 井口装置
  • 简介:非常油气资源的估计最终开采量(EUR)的预测具有举足轻重的意义。尽管Arps标准曲线和扩展指数模型能给出合理的EUR预测,但是仍不足以解释非常油气藏难以提模的生产动态。本研究引入和应用了一种新EUR半解析法,通过数据模拟加以实现,并采用非常油气藏的实际数据进行了验证。参照系列同心圆压缩系数要素(类似于电容器元件),得出了计算概念地质体油气产量的连续性方程的解析结果。这种方法模拟了一系列同心储层段对井产量的贡献随其到增产处理储集体(SRV)越来越远而不断递减的情况。解析公式抓住了早期生产特征和SRV主导的流动模式,从而可以更好地预测EUR。

  • 标签: 非常规油气藏 半解析法 EUR 预测 非常规油气资源 数据模拟
  • 简介:叙述了用来评价非常天然气系统(还可定义为连续气藏)的概念。连续气藏差不多独立于水柱而存在,且与气体在水中的浮力没有直接关系。它们不能按下倾水面所划分的单个可数油田或油藏来代表。基于这些原因,根据估算未发现的不连续油藏的规模和数量的传统资源评价方法不能应用于连续气藏,而需要专门的评价方法。非常天然气系统(也称连续气藏)包括煤层甲烷、盆地中心气、所谓的致密气、裂缝泥岩(和白垩岩)气和天然气水合物。随地质环境的不同,深盆气和微生物气系统可以是连续气藏,也可以是非连续气藏。采用了两种基本的资源评价方法来评价连续气藏。第一种方法基于对天然气地质储量的估算。通常将天然气地质总储量的体积估算值与总采收率值结合起来使用,以便将评价范围从评价沉积岩中的天然气储量缩小到预测储量增加的潜力;第二种方法基于连续气藏的生产动态,如以经验为主的气井和气藏生产模型所反映的那样。在这两种方法中,生产特征(而非天然气地质储量)是预测储量增加潜力的基础。

  • 标签: 非常规天然气系统 资源评价 原始地质储量 天然气水合物 深盆气 动态评价
  • 简介:文中提出了一种方法,利用共生二氧化碳(CO_2)和甲烷中碳的同位素和组分质量平衡,识别由碳酸盐还原反应生成的生物甲烷的碳源。在沥青或石油的微生物甲烷生成反应中,甲烷的生成数量要多于CO_2,因此甲烷和CO_2的碳同位素组成相对较重,与热成因甲烷的碳同位素组成相似。而在以干酪根或现代有机物为碳源的微生物甲烷生成反应中,CO_2的生成数量要多于甲烷,因此,这类甲烷和CO_2的碳同位素组成较轻,这是浅层生物甲烷的典型特征。根据三篇文献记载的实例对这个概念作了定量分析和验证,以确定是否能够以足够高的准确度计算CO_2的相对生成量,进而预测页岩气藏和煤层气藏中甲烷的源碳类型和生成温度。安特里姆页岩气(密歇根州I)被证实主要源自现代储层温度或更低温度条件下页岩中的不成熟沥青。圣胡安盆地西部弗鲁特兰煤气主要源自现代储层温度条件下成熟度已进入油窗的煤中的沥青。而印第安纳州西南部出产的煤气主要源自现代储层温度或更高温度条件下未达到热成熟的干酪根。识别甲烷的碳源和生成温度,有助于圈出微生物甲烷的成藏有利区,而这类有利区的分布取决于生物气的生成能力。温度数据有助于确定生物甲烷现今是否仍在活跃生成抑或是早期生成的生物气的残留物。

  • 标签: 非常规气藏 甲烷源 微生物 识别 中碳 碳同位素组成
  • 简介:摘要:非常油气资源开发已成为全球能源领域的重要研究方向。与常规油气资源相比,非常油气资源的开发具有井位分散、单井产量低、储层致密等特点,给油气开发带来了诸多挑战。修井工程作为油气田开发的重要组成部分,对于提高非常油气开发效果具有重要意义。

  • 标签: 修井工程 非常规油气开发 作用
  • 简介:近20年来,非常气资源已成为美国能源供给的主要来源,而且在未来将显得更为重要。

  • 标签: 能源供给 非常规气 美国