学科分类
/ 1
4 个结果
  • 简介:

  • 标签:
  • 简介:AbstractTraumatic brain injury (TBI), a growing public health problem, is a leading cause of death and disability worldwide, although its prevention measures and clinical cares are substantially improved. Increasing evidence shows that TBI may increase the risk of mood disorders and neurodegenerative diseases, including Alzheimer's disease (AD). However, the complex relationship between TBI and AD remains elusive. Metabolic dysfunction has been the common pathology in both TBI and AD. On the one hand, TBI perturbs the glucose metabolism of the brain, and causes energy crisis and subsequent hyperglycolysis. On the other hand, glucose deprivation promotes amyloidogenesis via β-site APP cleaving enzyme-1 dependent mechanism, and triggers tau pathology and synaptic function. Recent findings suggest that TBI might facilitate Alzheimer's pathogenesis by altering metabolism, which provides clues to metabolic link between TBI and AD. In this review, we will explore how TBI-induced metabolic changes contribute to the development of AD.

  • 标签: Alzheimer's disease Traumatic brain injury Glucose metabolism Neurological disorder
  • 简介:AbstractBackground:Glucose control is an important aspect in managing critically ill patients. The goal of this study was to compare the effects of sequential feeding (SF) and continuous feeding (CF) on the blood glucose of critically ill patients.Methods:A non-inferiority randomized controlled trial was adopted in this study. A total of 62 patients who were fed enteral nutritional suspension through gastric tubes were enrolled. After achieving 80% of the nutrition target calories (25 kcal·kg-1·day-1) through CF, the patients were then randomly assigned into SF and CF groups. In the SF group, the feeding/fasting time was reasonably determined according to the circadian rhythm of the human body as laid out in traditional Chinese medicine theory. The total daily dosage of the enteral nutritional suspension was equally distributed among three time periods of 7 to 9 o’clock, 11 to 13 o’clock, and 17 to 19 o’clock. The enteral nutritional suspension in each time period was pumped at a uniform rate within 2 h by an enteral feeding pump. In the CF group, patients received CF at a constant velocity by an enteral feeding pump throughout the study. Blood glucose values at five points (6:00/11:00/15:00/21:00/1:00) were monitored and recorded for seven consecutive days after randomization. Enteral feeding intolerance was also recorded. Non-inferiority testing was adopted in this study, the chi-square test or Fisher test was used for qualitative data, and the Mann-Whitney U test was used for quantitative data to determine differences between groups. In particular, a repeated measure one-way analysis of variance was used to identify whether changes in glucose value variables across the time points were different between the two groups.Results:There were no significant demographic or physiological differences between the SF and CF groups (P > 0.050). The average glucose level in SF was not higher than that in CF (8.8 [7.3-10.3] vs. 10.7 [9.1-12.1] mmol/L, Z = -2.079, P for non-inferiority = 0.019). Hyperglycemia incidence of each patient was more common in the CF group than that in the SF group (38.4 [19.1-63.7]% vs. 11.8 [3.0-36.7]%, Z = -2.213, P = 0.027). Hypoglycemia was not found in either group. Moreover, there was no significant difference during the 7 days in the incidence of feeding intolerance (P > 0.050).Conclusions:In this non-inferiority study, the average blood glucose in SF was not inferior to that in CF. The feeding intolerance in SF was similar to that in CF. SF may be as safe as CF for critically ill patients.

  • 标签: Intensive care unit Enteral feeding Blood glucose Feeding intolerance
  • 简介:AbstractBackground:Autophagy of alveolar macrophages is a crucial process in ischemia/reperfusion injury-induced acute lung injury (ALI). Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent cells with the potential for repairing injured sites and regulating autophagy. This study was to investigate the influence of BM-MSCs on autophagy of macrophages in the oxygen-glucose deprivation/restoration (OGD/R) microenvironment and to explore the potential mechanism.Methods:We established a co-culture system of macrophages (RAW264.7) with BM-MSCs under OGD/R conditions in vitro. RAW264.7 cells were transfected with recombinant adenovirus (Ad-mCherry-GFP-LC3B) and autophagic status of RAW264.7 cells was observed under a fluorescence microscope. Autophagy-related proteins light chain 3 (LC3)-I, LC3-II, and p62 in RAW264.7 cells were detected by Western blotting. We used microarray expression analysis to identify the differently expressed genes between OGD/R treated macrophages and macrophages co-culture with BM-MSCs. We investigated the gene heme oxygenase-1 (HO-1), which is downstream of the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway.Results:The ratio of LC3-II/LC3-I of OGD/R treated RAW264.7 cells was increased (1.27 ± 0.20 vs. 0.44 ± 0.08, t = 6.67, P < 0.05), while the expression of p62 was decreased (0.77 ± 0.04 vs. 0.95 ± 0.10, t = 2.90, P < 0.05), and PI3K (0.40 ± 0.06 vs. 0.63 ± 0.10, t = 3.42, P < 0.05) and p-Akt/Akt ratio was also decreased (0.39 ± 0.02 vs. 0.58 ± 0.03, t = 9.13, P < 0.05). BM-MSCs reduced the LC3-II/LC3-I ratio of OGD/R treated RAW264.7 cells (0.68 ± 0.14 vs. 1.27 ± 0.20, t = 4.12, P < 0.05), up-regulated p62 expression (1.10 ± 0.20 vs. 0.77 ± 0.04, t = 2.80, P < 0.05), and up-regulated PI3K (0.54 ± 0.05 vs. 0.40 ± 0.06, t = 3.11, P < 0.05) and p-Akt/Akt ratios (0.52 ± 0.05 vs. 0.39 ± 0.02, t = 9.13, P < 0.05). A whole-genome microarray assay screened the differentially expressed gene HO-1, which is downstream of the PI3K/Akt signaling pathway, and the alteration of HO-1 mRNA and protein expression was consistent with the data on PI3K/Akt pathway.Conclusions:Our results suggest the existence of the PI3K/Akt/HO-1 signaling pathway in RAW264.7 cells under OGD/R circumstances in vitro, revealing the mechanism underlying BM-MSC-mediated regulation of autophagy and enriching the understanding of potential therapeutic targets for the treatment of ALI.

  • 标签: Bone marrow mesenchymal stem cells Oxygen-glucose deprivation/restoration Phosphoinositide 3-kinase/protein kinase B signaling pathway Macrophages Autophagy Whole-genome microarray assay